Aimed at achieving ultrahigh control performance for high-end applications of harmonic drives, an adaptive control algorithm using additional sensing, namely, the joint and motor positions and the joint torque, and their practically available time derivatives, is proposed. The proposed adaptive controller compensates the large friction associated with harmonic drives, while incorporating the dynamics of flexspline. The L2L stability and the L2 gain-induced H stability are guaranteed in both joint torque and joint position control modes. Conditions for achieving asymptotic stability are also given. The proposed joint controller can be efficiently incorporated into any robot motion control system based on either its torque control interface or the virtual decomposition control approach. Experimental results demonstrated in both the time and frequency domains confirm the superior control performance achieved not only in individual joint motion, but also in coordinated motion of an entire robot manipulator.

1.
Zhu
,
W.-H.
,
Xi
,
Y.-G.
,
Zhang
,
Z.-J.
,
Bien
,
Z.
, and
De Schutter
,
J.
, 1997, “
Virtual Decomposition Based Control for Generalized High Dimensional Robotic Systems With Complicated Structure
,”
IEEE Trans. Rob. Autom.
1042-296X,
13
(
3
), pp.
411
436
.
2.
Zhu
,
W.-H.
, and
De Schutter
,
J.
, 1999, “
Adaptive Control of Mixed Rigid/Flexible Joint Robot Manipulators Based on Virtual Decomposition
,”
IEEE Trans. Rob. Autom.
1042-296X,
15
(
2
), pp.
310
317
.
3.
Tuttle
,
T. D.
, and
Seering
,
W. P.
, 1996, “
A Nonlinear Model of a Harmonic Drive Gear Transmission
,”
IEEE Trans. Rob. Autom.
1042-296X,
12
(
3
), pp.
368
374
.
4.
Kircanski
,
N. M.
, and
Goldenberg
,
A. A.
, 1997, “
An Experimental Study of Nonlinear Stiffness, Hysteresis, and Friction Effects in Robot Joints With Harmonic Drives and Torque Sensors
,”
Int. J. Robot. Res.
0278-3649,
16
(
2
), pp.
214
239
.
5.
Gandhi
,
P. S.
,
Ghorbel
,
F. H.
, and
Dabney
,
J.
, 2002, “
Modeling, Identification, and Compensation of Friction in Harmonic Drives
,”
Proc. 41st IEEE Conference on Decision and Control
, Vol.
1
,
IEEE
, New York, pp.
160
166
.
6.
Dhaouadi
,
R.
,
Ghorbel
,
F. H.
, and
Gandhi
,
P. S.
, 2003, “
A New Dynamic Model of Hysteresis in Harmonic Drives
,”
IEEE Trans. Ind. Electron.
0278-0046,
50
(
6
), pp.
1165
1171
.
7.
Hashimoto
,
M.
, 1989, “
Robot Motion Control Based on Joint Torque Sensing
,”
Proc. of 1989 IEEE Int. Conf. Robotics and Automation
,
IEEE
, New York, pp.
256
261
.
8.
Kosuge
,
K.
,
Takeuchi
,
H.
, and
Furuta
,
K.
, 1990, “
Motion Control of a Robot Arm Using Joint Torque Sensors
,”
IEEE Trans. Rob. Autom.
1042-296X,
6
(
2
), pp.
258
263
.
9.
Hashimoto
,
M.
,
Kiyosawa
,
Y.
, and
Paul
,
R. P.
, 1993, “
A Torque Sensing Technique for Robots With Harmonic Drives
,”
IEEE Trans. Rob. Autom.
1042-296X,
9
(
1
), pp.
108
116
.
10.
Godler
,
I.
,
Horiuchi
,
M.
,
Hashimoto
,
M.
, and
Ninomiya
,
T.
, 2000, “
Accuracy Improvement of Built-in Torque Sensing for Harmonic Drives
,”
IEEE/ASME Trans. Mechatron.
1083-4435,
5
(
4
), pp.
360
366
.
11.
Khalil
,
H. K.
, 1996,
Nonlinear Systems
, 2nd ed.,
Prentice-Hall
, Englewood Cliffs, NJ.
12.
Van der Schaft
,
A. J.
, 1992, “
L2 -Gain Analysis of Nonlinear Systems and Nonlinear State Feedback H∞ Control
,”
IEEE Trans. Autom. Control
0018-9286,
37
(
6
), pp.
770
784
.
13.
Albu-Schaffer
,
A.
, and
Hirzinger
,
G.
, 2001, “
Parameter Identification and Passivity Based Joint Control for a 7DOF Torque Controlled Light Weight Robot
,”
Proc. of 2001 IEEE Int. Conf. Robotics and Automation
, Seoul,
IEEE
, New York, pp.
2852
2858
.
14.
De Luca
,
A.
,
Farina
,
R.
, and
Lucibello
,
P.
, 2005, “
On the Control of Robots With Visco-Elastic Joints
,”
Proc. of 2005 IEEE Int. Conf. Robotics and Automation
, Barcelona,
IEEE
, New York, pp.
4308
4313
(on-line: pp. 4297–4302).
15.
Spong
,
M. W.
, 1987, “
Modeling and Control of Elastic Joint Robots
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
109
, pp.
310
319
.
16.
Lozano
,
R.
, and
Brogliato
,
B.
, 1992, “
Adaptive Control of Robot Manipulators With Flexible Joints
,”
IEEE Trans. Autom. Control
0018-9286,
37
(
2
), pp.
174
181
.
17.
Zhang
,
G.
, and
Furusho
,
J.
, 1998, “
Control of Robot Arms Using Joint Torque Sensor
,”
IEEE Control Syst. Mag.
0272-1708,
18
(
1
), pp.
48
55
.
18.
Zhu
,
W.-H.
, and
Doyon
,
M.
, 2004, “
Adaptive Control of Harmonic Drives
,”
Proc. of 43rd IEEE Conf. on Decision and Control
, Atlantis, Paradise Island, Bahamas,
IEEE
, New York, pp.
2602
2608
.
19.
Craig
,
J. J.
, 1986,
Introduction to Robotics: Mechanics and Control
,
Addison-Wesley
, Reading, MA.
20.
Zhu
,
W.-H.
,
Piedboeuf
,
J.-C.
, and
Gonthier
,
Y.
, 2002, “
Emulation of a Space Robot Using a Hydraulic Manipulator on Ground
,”
Proc. 2002 IEEE Int. Conf. Robotics and Automation
, Washington, DC,
IEEE
, New York, pp.
2315
2320
.
21.
Zhu
,
W.-H.
, and
Salcudean
,
S. E.
, 2000, “
Stability Guaranteed Teleoperation: An Adaptive Motion/Force Control Approach
,”
IEEE Trans. Autom. Control
0018-9286,
45
(
11
), pp.
1951
1969
.
22.
Tao
,
G.
, 1997, “
A Simple Alternative to the Barbălat Lemma
,”
IEEE Trans. Autom. Control
0018-9286,
42
(
5
), p.
698
.
You do not currently have access to this content.