The purpose of this paper is to develop an accurate closed-loop acting force technique for a pneumatic actuator, as an essential stage in the implementation of positioning control strategy. Since an analytical nonlinear structure, which linearly depends on parameter uncertainties, generically characterizes pneumatic plants, a feedback linearization design is proposed to cancel most of the resulting nonlinearities. Then, we proposed a linear state-feedback control and an additive nonlinear action to robustly bound the force error dynamics, devices which are required to handle the further parametric uncertainties and exogenous unbounded disturbances that will arise on the deduced structure. The design of the linear control gains is performed within robust closed-loop pole clustering using a linear matrix inequality approach. Finally, various experimental results illustrate the validity of the approach.

1.
Kazerooni
,
H.
, 2005, “
Design and Analysis of Pneumatic Force Generators for Mobile Robotic Systems
,”
IEEE/ASME Trans. Mechatron.
1083-4435,
10
(
4
), pp.
411
418
.
2.
André
,
P.
,
Kauffmann
,
J.-M.
,
Lhote
,
F.
, and
Taillard
,
J.-P.
, 1983,
Les Robots—Constituants Technologiques—Tome 4
,
Hermes
,
Paris
.
3.
Vertut
,
J.
, and
Coiffet
,
P.
, 1984,
Les Robots—Téléopération, Évolution des Technologies—Tome 3
,
Hermes
,
Paris
.
4.
Khayati
,
K.
,
Bigras
,
P.
, and
Dessaint
,
L.-A.
, 2003, “
On Modelization and Robust Controller Synthesis of Pneumatic Actuator Plants Using LMI Approach
,”
IMACS Multiconference Computational Engineering in Systems Applications
,
Lille, France
, Paper No. S1-R-00–0304.
5.
Shearer
,
J. L.
, 1956, “
Study of Pneumatic Processes in the Continuous Control of Motion With Compressed Air—I, II
,”
Trans. ASME
0097-6822,
78
, pp.
233
249
.
6.
Anderson
,
B. W.
, 1967,
The Analysis and Design of Pneumatic Systems
,
Wiley
,
New York
.
7.
Khayati
,
K.
,
Bigras
,
P.
, and
Dessaint
,
L.-A.
, 2002, “
A Robust Pole Clustering Design of Pneumatic Systems Using LMI Approach
,”
Proceedings of the IEEE International Conference on Systems, Man and Cybernetics
,
Hammamet, Tunisia
, Vol.
4
, pp.
274
279
.
8.
Khayati
,
K.
,
Bigras
,
P.
, and
Dessaint
,
L.-A.
, 2002, “
Retaining Or Neglecting Valve Spool Dynamics in Tracking Controller Strategies for Pneumatic Systems
,”
Proceedings of the IEEE International Conference on Methods and Models in Automation and Robotics
,
Szczecin, Poland
.
9.
Richer
,
E.
, and
Hurmuzlu
,
Y.
, 2000, “
High Performance Pneumatic Force Actuator System, Part I—Nonlinear Mathematical Model
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
122
(
3
), pp.
416
425
.
10.
Song
,
J.
, and
Ishida
,
Y.
, 1997, “
A Robust Sliding Mode Control for Pneumatic Servo Systems
,”
Int. J. Eng. Sci.
0020-7225,
35
(
8
), pp.
711
723
.
11.
Lee
,
H. K.
,
Choi
,
G. S.
, and
Choi
,
G. H.
, 2002, “
A Study on Tracking Position Control of Pneumatic Actuators
,”
Mechatronics
0957-4158,
12
(
6
), pp.
813
831
.
12.
Xiang
,
F.
, and
Wikander
,
J.
, 2004, “
Block-Oriented Approximate Feedback Linearization for Control of Pneumatic Actuator System
,” IFAC J.
Control Eng. Pract.
0967-0661,
12
(
4
), pp.
387
399
.
13.
Schulte
,
H.
, and
Hahn
,
H.
, 2004, “
Fuzzy State Feedback Gain Scheduling Control of Servo-Pneumatic Actuators
,” IFAC J.
Control Eng. Pract.
0967-0661,
12
(
5
), pp.
639
650
.
14.
Ben-Dov
,
D.
, and
Salcudean
,
S. E.
, 1995, “
A Force Controlled Pneumatic Actuator
,”
IEEE Trans. Rob. Autom.
1042-296X,
11
(
6
), pp.
906
911
.
15.
Richer
,
E.
, and
Hurmuzlu
,
Y.
, 2000, “
High Performance Pneumatic Force Actuator System: Part II—Nonlinear Controller Design
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
122
(
3
), pp.
426
434
.
16.
Bigras
,
P.
, and
Khayati
,
K.
, 2002, “
Modified Feedback Linearization Controller for Pneumatic System With Non Negligible Connection Port Restriction
,”
Proceedings of the IEEE International Conference on Systems, Man and Cybernetics
,
Hammamet, Tunisia
, Vol.
2
, pp.
227
231
.
17.
Khayati
,
K.
,
Bigras
,
P.
, and
Dessaint
,
L.-A.
, 2004, “
A Robust Feedback Linearization Force Control of a Pneumatic Actuator
,”
Proceedings of the IEEE International Conference on Systems, Man and Cybernetics
,
The Hague, Holland
, pp.
6113
6119
.
18.
Bigras
,
P.
, 2005, “
Controller Design for Pneumatic Systems With Connection Port Restriction: An LMI Approach
,”
Trans. Can. Soc. Mech. Eng.
0315-8977,
29
, pp.
23
40
.
19.
Outbib
,
R.
, and
Richard
,
E.
, 2000, “
State Feedback Stabilization of an Electropneumatic System
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
122
(
3
), pp.
410
415
.
20.
Smaoui
,
M.
,
Brun
,
X.
, and
Thomasset
,
D.
, 2006, “
A Study on Tracking Position Control of an Electropneumatic System Using Backstepping Design
,” IFAC J.
Control Eng. Pract.
0967-0661,
14
, pp.
923
933
.
21.
Bigras
,
P.
, 2005, “
Pressure Control of Pneumatic Systems With a Non Negligible Connection Port Restriction
,”
Control Intell. Syst.
1480-1752,
33
, pp.
111
118
.
22.
Bigras
,
P.
, and
Khayati
,
K.
, 2002, “
Nonlinear Observer for Pneumatic System With Non Negligible Connection Port Restriction
,”
Proceedings of the IEEE American Control Conference
,
Anchorage, AK
, pp.
3191
3195
.
23.
Bigras
,
P.
, 2005, “
Sliding-Mode Observer as a Time-Variant Estimator for Control of Pneumatic Systems
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
127
, pp.
499
502
.
24.
Khayati
,
K.
,
Bigras
,
P.
, and
Dessaint
,
L.-A.
, 2006, “
On Force Control of Pneumatic Actuator Subject to a Position Tracking and a Friction Estimation Based on LuGre Model
,” École de Technologie Supérieure, Technical Report No. ETS-RT-2006-001.
25.
Canudas
,
C. W.
,
Olsson
,
H.
,
Aström
,
K. J.
, and
Lischinsky
,
P.
, 1995, “
A New Model for Control of Systems With Friction
,”
IEEE Trans. Autom. Control
0018-9286,
40
(
3
), pp.
419
425
.
26.
Madi
,
M. S.
,
Khayati
,
K.
, and
Bigras
,
P.
, 2004, “
Parameter Estimation for the LuGre Friction Model Using Interval Aanalysis and Set Inversion
,”
Proceedings of the IEEE International Conference on Systems, Man and Cybernetics
,
The Hague, Holland
, pp.
428
433
.
27.
Khalil
,
H. K.
, 2002,
Nonlinear Systems
,
Prentice-Hall
,
New York
.
28.
Chilali
,
M.
,
Gahinet
,
P.
, and
Apkarian
,
P.
, 1999, “
Robust Pole Placement in LMI Regions
,”
IEEE Trans. Autom. Control
0018-9286,
44
(
12
), pp.
2257
2270
.
29.
Chilali
,
M.
, and
Gahinet
,
P.
, 1996, “
H∞ Design With Pole Placement Constraints: An LMI Approach
,”
IEEE Trans. Autom. Control
0018-9286,
41
(
3
), pp.
358
367
.
30.
Boyd
,
S.
,
El Ghaoui
,
L.
,
Feron
,
E.
, and
Balakrishnan
,
V.
, 1994,
Linear Matrix Inequalities in Systems and Control Theory
,
Society for Industrial and Applied Mathematics
,
Philadelphia, PA
, Vol.
15
.
31.
Khayati
,
K.
,
Bigras
,
P.
, and
Dessaint
,
L.-A.
, 2001, “
Nonlinear Control of Pneumatic Actuators
,”
Proceedings of the ICC&IE International Conference on Computers and Industrial Engineering
,
Montreal
, pp.
214
218
.
32.
Gahinet
,
P.
,
Nemirovskii
,
A.
,
Laub
,
A. J.
, and
Chilali
,
M.
, 1995,
MATLAB LMI Control Toolbox
,
The MathWorks Inc.
, MA.
33.
Saoud
,
O.
, and
Bigras
,
P.
, 2003, “
Conception d’une Loi de Commande Robuste de la Pression Dans un Réservoir Pneumatique á l’aide d’une Formulation IML
,”
Proceedings of the IEEE Canadian Conference on Electrical Engineering Toward a Caring and Humane Technology
,
Montreal, QC, Canada
, pp.
001
004
.
34.
Khayati
,
K.
,
Bigras
,
P.
, and
Dessaint
,
L.-A.
, 2004, “
A Dynamic Feedback Tracking Design for Systems With Friction Using the LMI Formulation
,”
Proceedings of the IEEE International Conference on Control Applications
, Vol.
1
, pp.
819
824
.
You do not currently have access to this content.