This paper addresses the tracking control of hydraulic actuators commonly used in many hydraulically actuated robotic systems. Dynamic model of the entire actuator incorporating highly nonlinear hydraulic functions and the LuGre dynamic friction model is used to arrive at a suitable controller. The controller is augmented with adaptation laws to compensate for parametric uncertainties in the actuator dynamics, hydraulic functions as well as friction with nonuniform force variations. Furthermore, an adaptive observer is used in the controller to avoid the use of acceleration measurement. Therefore, only measurements of displacement, velocity, and hydraulic line pressures are required for the implementation of the proposed controller. Stability and convergence of the control system are theoretically studied. Experimental results are presented verifying the effectiveness of the developed controller.

1.
Jerouane
,
M.
,
Sepehri
,
N.
, and
Lamnabhi-Lagarrigue
,
F.
, 2004, “
Dynamic Analysis of Variable Structure Force Control of Hydraulic Actuators Via the Reaching Law Approach
,”
Int. J. Control
0020-7179,
77
, pp.
1260
1268
.
2.
Yu
,
J.
,
Chen
,
Z.
, and
Lu
,
Y.
, 1994, “
The Variation of Oil Effective Bulk Modulus With Pressure in Hydraulic Systems
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
116
, pp.
146
150
.
3.
Lischinsky
,
P.
,
Canudas-de-Wit
,
C.
, and
Morel
,
G.
, 1999, “
Friction Compensation for an Industrial Hydraulic Robot
,”
IEEE Control Syst. Mag.
0272-1708,
19
, pp.
25
32
.
4.
Canudas de Wit
,
C.
,
Olsson
,
H.
,
Åström
,
K. J.
, and
Lischinsky
,
P.
, 1995, “
A New Model for Control of Systems With Friction
,”
IEEE Trans. Autom. Control
0018-9286,
40
, pp.
419
425
.
5.
Sirouspour
,
M. R.
, and
Salcudean
,
S. E.
, 2001, “
Nonlinear Control of Hydraulic Robots
,”
IEEE Trans. Rob. Autom.
1042-296X,
17
, pp.
173
182
.
6.
Bu
,
F.
, and
Yao
,
B.
, 2001, “
Nonlinear Model Based Coordinated Adaptive Robust Control of Electro-Hydraulic Robotic Arms Via Over-Parametrizing Method
,”
Proceedings IEEE International Conference on Robotics and Automation
, pp.
3459
3464
.
7.
Tafazoli
,
S.
,
de Silva
,
C. W.
, and
Lawrence
,
P. D.
, 1998, “
Tracking Control of an Electrohydraulic Manipulator in the Presence of Friction
,”
IEEE Trans. Control Syst. Technol.
1063-6536,
6
, pp.
401
411
.
8.
Bonchis
,
A.
,
Corke
,
P. I.
, and
Rye
,
D. C.
, 2002, “
Experimental Evaluation of Position Control Methods for Hydraulic Systems
,”
IEEE Trans. Control Syst. Technol.
1063-6536,
10
, pp.
876
882
.
9.
Khalil
,
H. K.
, 2002,
Nonlinear Systems
, 3rd ed.,
Prentice-Hall
,
Berlin
.
10.
Tan
,
Y.
,
Chang
,
J.
, and
Tan
,
H.
, 2003, “
Adaptive Backstepping Control and Friction Compensation for AC Servo With Inertia and Load Uncertainties
,”
IEEE Trans. Ind. Electron.
0278-0046,
50
, pp.
944
952
.
11.
Zhu
,
W.-H.
,
Bien
,
Z.
, and
De Schutter
,
J.
, 1998, “
Adaptive Motion/Force Control of Multiple Manipulators With Joint Flexibility Based on Virtual Decomposition
,”
IEEE Trans. Autom. Control
0018-9286,
43
, pp.
46
60
.
12.
Slotine
,
J.-J. E.
, and
Li
,
W.
, 1991,
Applied Nonlinear Control
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
13.
Zhu
,
W.-H.
, and
De Schutter
,
J.
, 1999, “
Adaptive Control of Mixed Rigid/Flexible Joint Robot Manipulators
,”
IEEE Trans. Rob. Autom.
1042-296X,
15
, pp.
310
317
.
You do not currently have access to this content.