This review provides a summary of work on the resonant nonlinear dynamics of micro- and nanoelectromechanical systems. This research area, which has been active for approximately a decade, involves the study of nonlinear behaviors arising in small scale, vibratory, mechanical devices that are typically integrated with electronics for use in signal processing, actuation, and sensing applications. The inherent nature of these devices, which includes low damping, desired resonant operation, and the presence of nonlinear potential fields, sets an ideal stage for the appearance of nonlinear behavior. While nonlinearities are typically avoided in device design, they have the potential to allow designers to beneficially leverage nonlinear behavior in certain applications. This paper provides an overview of the fundamental research on nonlinear behaviors arising in micro-/nanoresonators, including direct and parametric resonances in individual resonators and coupled resonator arrays, and also describes the active exploitation of nonlinear dynamics in the development of resonant mass sensors, inertial sensors, and electromechanical signal processing systems. This paper closes with some brief remarks about important ongoing developments in the field.

1.
Nathanson
,
H. C.
, and
Wickstrom
,
R. A.
, 1965, “
A Resonant-Gate Silicon Surface Transistor With High-Q Band-Pass Properties
,”
Appl. Phys. Lett.
0003-6951,
7
(
4
), pp.
84
86
.
2.
Nathanson
,
H. C.
,
Newell
,
W. E.
,
Wickstrom
,
R. A.
, and
Davis
,
J. R.
, Jr.
, 1967, “
The Resonant Gate Transistor
,”
IEEE Trans. Electron Devices
0018-9383,
14
(
3
), pp.
117
133
.
3.
Brand
,
O.
, and
Baltes
,
H.
, 1998, “
Micromachined Resonant Sensors—An Overview
,”
Sensors Update
,
4
(
1
), pp.
3
51
.
4.
Schmidt
,
M. A.
, and
Howe
,
R. T.
, 1987, “
Silicon Resonant Microsensors
,”
Ceram. Eng. Sci. Proc.
0196-6219,
8
(
9–10
), pp.
1019
1034
.
5.
Stemme
,
G.
, 1991, “
Resonant Silicon Sensors
,”
J. Micromech. Microeng.
0960-1317,
1
(
2
), pp.
113
125
.
6.
Rhoads
,
J. F.
,
Shaw
,
S. W.
, and
Turner
,
K. L.
, 2008, “
Nonlinear Dynamics and Its Applications In Micro- And Nanoresonators
,”
Proceedings of the DSCC 2008: The 2008 ASME International Dynamic Systems and Control Conference
.
7.
García
,
R.
, and
Perez
,
R.
, 2002, “
Dynamic Atomic Force Microscopy Methods
,”
Surf. Sci. Rep.
0167-5729,
47
(
6–8
), pp.
197
301
.
8.
Raman
,
A.
,
Melcher
,
J.
, and
Tung
,
R.
, 2008, “
Cantilever Dynamics in Atomic Force Microscopy
,”
Nanotoday
1748-0132,
3
(
1–2
), pp.
20
27
.
9.
Lifshitz
,
R.
, and
Cross
,
M. C.
, 2008, “
Nonlinear Dynamics of Nanomechanical and Micromechanical Resonators
,”
Review of Nonlinear Dynamics and Complexity
, Vol.
1
,
H. G.
Schuster
, ed., pp.
1
52
.
10.
Batra
,
R. C.
,
Porfiri
,
M.
, and
Spinello
,
D.
, 2007, “
Review of Modeling Electrostatically Actuated Microelectromechanical Systems
,”
Smart Mater. Struct.
0964-1726,
16
(
6
), pp.
R23
R31
.
11.
Fargas-Marques
,
A.
,
Costa Castello
,
R.
, and
Shkel
,
A. M.
, 2005, “
Modelling the Electrostatic Actuation of MEMS: State of the Art 2005
,” Universitat Politecnica De Catalunya Technical Report No. IOC-DT-P-2005-18.
12.
Senturia
,
S. D.
, 2000,
Microsystem Design
,
Kluwer Academic
,
Dordrecht
.
13.
Pelesko
,
J. A.
, and
Bernstein
,
D. H.
, 2002,
Modeling MEMS and NEMS
,
Chapman and Hall
,
Boca Raton, FL
/
CRC
,
Boca Raton, FL
.
14.
Lobontiu
,
N. O.
, 2006,
Mechanical Design of Microresonators: Modeling and Applications
(
Nanoscience and Technology Series
),
McGraw-Hill
,
New York
.
15.
Cleland
,
A. N.
, 2003,
Foundations of Nanomechanics: From Solid-State Theory to Device Applications
(
Advanced Texts in Physics
),
Springer
,
Berlin
.
16.
Clark
,
J. V.
, and
Pister
,
K. S. J.
, 2007, “
Modeling, Simulation, and Verification of an Advanced Micromirror Using SUGAR
,”
J. Microelectromech. Syst.
1057-7157,
16
(
6
), pp.
1524
1536
.
17.
Younis
,
M. I.
, and
Nayfeh
,
A. H.
, 2007, “
Simulation of Squeeze-Film Damping of Microplates Actuated by Large Electrostatic Load
,”
ASME J. Comput. Nonlinear Dyn.
1555-1423,
2
(
3
), pp.
232
240
.
18.
Braginsky
,
V. B.
,
Mitrofanov
,
V. P.
, and
Panov
,
V. I.
, 1985,
Systems With Small Dissipation
,
The University of Chicago Press
,
Chicago, IL
.
19.
Cleland
,
A. N.
, and
Roukes
,
M. L.
, 1999, “
External Control of Dissipation in a Nanometer-Scale Radiofrequency Mechanical Resonator
,”
Sens. Actuators
0250-6874,
72
(
3
), pp.
256
261
.
20.
Hutchinson
,
A. B.
,
Truitt
,
P. A.
,
Schwab
,
K. C.
,
Sekaric
,
L.
,
Parpia
,
J. M.
,
Craighead
,
H. G.
, and
Butler
,
J. E.
, 2004, “
Dissipation in Nanocrystalline-Diamond Nanomechanical Resonators
,”
Appl. Phys. Lett.
0003-6951,
84
(
6
), pp.
972
974
.
21.
Lifshitz
,
R.
, 2002, “
Phonon-Mediated Dissipation in Micro- and Nano-Mechanical Systems
,”
Physica B
0921-4526,
316–317
, pp.
397
399
.
22.
Mohanty
,
P.
,
Harrington
,
D. A.
,
Ekinci
,
K. L.
,
Yang
,
Y. T.
,
Murphy
,
M. J.
, and
Roukes
,
M. L.
, 2002, “
Intrinsic Dissipation in High-Frequency Micromechanical Resonators
,”
Phys. Rev. B
0163-1829,
66
, p.
085416
.
23.
Yang
,
J.
,
Ono
,
T.
, and
Esashi
,
M.
, 2002, “
Energy Dissipation in Submicron Thick Single-Crystal Silicon Cantilevers
,”
J. Microelectromech. Syst.
1057-7157,
11
(
6
), pp.
775
783
.
24.
Hosaka
,
H.
,
Itao
,
K.
, and
Kuroda
,
S.
, 1995, “
Damping Characteristics of Beam-Shaped Micro-Oscillators
,”
Sens. Actuators, A
0924-4247,
49
(
1–2
), pp.
87
95
.
25.
Lifshitz
,
R.
, and
Roukes
,
M. L.
, 2000, “
Thermoelastic Damping in Micro- and Nanomechanical Systems
,”
Phys. Rev. B
0163-1829,
61
(
8
), pp.
5600
5609
.
26.
Srikar
,
V. T.
, and
Senturia
,
S. D.
, 2002, “
Thermoelastic Damping in Fine-Grained Polysilicon Flexural Beam Resonators
,”
J. Microelectromech. Syst.
1057-7157,
11
(
5
), pp.
499
504
.
27.
Ye
,
W.
,
Wang
,
X.
,
Hemmert
,
W.
,
Freeman
,
D.
, and
White
,
J.
, 2003, “
Air Damping in Laterally Oscillating Microresonators: A Numerical and Experimental Study
,”
J. Microelectromech. Syst.
1057-7157,
12
(
5
), pp.
557
566
.
28.
Zhang
,
W.
, and
Turner
,
K.
, 2007, “
Frequency Dependent Fluid Damping of Micro/Nano Flexural Resonators: Experiment, Model and Analysis
,”
Sens. Actuators, A
0924-4247,
134
(
2
), pp.
594
599
.
29.
Yasumura
,
K. Y.
,
Stowe
,
T. D.
,
Chow
,
E. M.
,
Pfafman
,
T.
,
Kenny
,
T. W.
,
Stipe
,
B. C.
, and
Rugar
,
D.
, 2000, “
Quality Factors in Micron- and Submicron-Thick Cantilevers
,”
J. Microelectromech. Syst.
1057-7157,
9
(
1
), pp.
117
125
.
30.
Chan
,
H. B.
,
Aksyuk
,
V. A.
,
Kleiman
,
R. N.
,
Bishop
,
D. J.
, and
Capasso
,
F.
, 2001, “
Nonlinear Micromechanical Casimir Oscillator
,”
Phys. Rev. Lett.
0031-9007,
87
(
21
), p.
211801
.
31.
Buks
,
E.
, and
Roukes
,
M. L.
, 2001, “
Metastability and the Casimir Effect in Micromechanical Systems
,”
Europhys. Lett.
0295-5075,
54
(
2
), pp.
220
226
.
32.
Turner
,
K. L.
,
Miller
,
S. A.
,
Hartwell
,
P. G.
,
MacDonald
,
N. C.
,
Strogatz
,
S. H.
, and
Adams
,
S. G.
, 1998, “
Five Parametric Resonances in a Microelectromechanical System
,”
Nature (London)
0028-0836,
396
(
6707
), pp.
149
152
.
33.
Adams
,
S. G.
,
Bertsch
,
F.
, and
MacDonald
,
N. C.
, 1998, “
Independent Tuning of Linear and Nonlinear Stiffness Coefficients
,”
J. Microelectromech. Syst.
1057-7157,
7
(
2
), pp.
172
180
.
34.
DeMartini
,
B. E.
,
Butterfield
,
H. E.
,
Moehlis
,
J.
, and
Turner
,
K. L.
, 2007, “
Chaos for a Microelectromechanical Oscillator Governed by the Nonlinear Mathieu Equation
,”
J. Microelectromech. Syst.
1057-7157,
16
(
6
), pp.
1314
1323
.
35.
DeMartini
,
B. E.
,
Rhoads
,
J. F.
,
Turner
,
K. L.
,
Shaw
,
S. W.
, and
Moehlis
,
J.
, 2007, “
Linear and Nonlinear Tuning of Parametrically Excited MEMS Oscillators
,”
J. Microelectromech. Syst.
1057-7157,
16
(
2
), pp.
310
318
.
36.
Jensen
,
B. D.
,
Mutlu
,
S.
,
Miller
,
S.
,
Kurabayashi
,
K.
, and
Allen
,
J. J.
, 2003, “
Shaped Comb Fingers for Tailored Electromechanical Restoring Force
,”
J. Microelectromech. Syst.
1057-7157,
12
(
3
), pp.
373
383
.
37.
Andres
,
M. V.
,
Foulds
,
K. W. H.
, and
Tudor
,
M. J.
, 1987, “
Nonlinear Vibrations and Hysteresis of Micromachined Silicon Resonators Designed as Frequency-Out Sensors
,”
Electron. Lett.
0013-5194,
23
(
18
), pp.
952
954
.
38.
Ikeda
,
K.
,
Kuwayama
,
H.
,
Kobayashi
,
T.
,
Watanabe
,
T.
,
Nishikawa
,
T.
,
Yoshida
,
T.
, and
Harada
,
K.
, 1989, “
Study of Nonlinear Vibration of Silicon Resonant Beam Strain Gauges
,”
Proceedings of the Eighth Sensor Symposium
, pp.
21
24
.
39.
Tilmans
,
H. A. C.
,
Elwenspoek
,
M.
, and
Fluitman
,
J. H. J.
, 1992, “
Micro Resonant Force Gauges
,”
Sens. Actuators, A
0924-4247,
30
(
1–2
), pp.
35
53
.
40.
Gui
,
C.
,
Legtenberg
,
R.
,
Tilmans
,
H. A. C.
,
Fluitman
,
J. H. J.
, and
Elwenspoek
,
M.
, 1998, “
Nonlinearity and Hysteresis of Resonant Strain Gauges
,”
J. Microelectromech. Syst.
1057-7157,
7
(
1
), pp.
122
127
.
41.
Nguyen
,
C. T.-C.
, and
Howe
,
R. T.
, 1993, “
CMOS Micromechanical Resonator Oscillator
,”
Proceedings of the IEEE International Electron Devices Meeting
, pp.
199
202
.
42.
Legtenberg
,
R.
, and
Tilmans
,
H. A. C.
, 1994, “
Electrostatically Driven Vacuum-Encapsulated Polysilicon Resonators, Part I: Design and Fabrication
,”
Sens. Actuators, A
0924-4247,
45
(
1
), pp.
57
66
.
43.
Tilmans
,
H. A. C.
, and
Legtenberg
,
R.
, 1994, “
Electrostatically Driven Vacuum-Encapsulated Polysilicon Resonators, Part II: Theory And Performance
,”
Sens. Actuators, A
0924-4247,
45
(
1
), pp.
67
84
.
44.
Bourouina
,
T.
,
Garnier
,
A.
,
Fujita
,
H.
,
Masuzawa
,
T.
, and
Peuzin
,
J. -C.
, 2000, “
Mechanical Nonlinearities in a Magnetically Actuated Resonator
,”
J. Micromech. Microeng.
0960-1317,
10
(
2
), pp.
265
270
.
45.
Piekarski
,
B.
,
DeVoe
,
D.
,
Dubey
,
M.
,
Kaul
,
R.
,
Conrad
,
J.
, and
Zeto
,
R.
, 2001, “
Surface Micromachined Piezoelectric Resonant Beam Filters
,”
Sens. Actuators, A
0924-4247,
91
(
3
), pp.
313
320
.
46.
Ayela
,
F.
, and
Fournier
,
T.
, 1998, “
An Experimental Study of Anharmonic Micromachined Silicon Resonators
,”
Meas. Sci. Technol.
0957-0233,
9
(
11
), pp.
1821
1830
.
47.
Camon
,
H.
, and
Larnaudie
,
F.
, 2000, “
Fabrication, Simulation and Experiment of a Rotating Electrostatic Silicon Mirror With Large Angular Deflection
,”
Proceedings of the MEMS 2000: The 13th Annual International Conference on Micro Electro Mechanical Systems
, pp.
645
650
.
48.
Abdel-Rahman
,
E. M.
, and
Nayfeh
,
A. H.
, 2003, “
Secondary Resonances of Electrically Actuated Resonant Microsensors
,”
J. Micromech. Microeng.
0960-1317,
13
(
3
), pp.
491
501
.
49.
Abdel-Rahman
,
E. M.
,
Younis
,
M. I.
, and
Nayfeh
,
A. H.
, 2002, “
Characterization of the Mechanical Behavior of an Electrically Actuated Microbeam
,”
J. Micromech. Microeng.
0960-1317,
12
(
6
), pp.
759
766
.
50.
Najar
,
F.
,
Choura
,
S.
,
El-Borgi
,
S.
,
Abdel-Rahman
,
E. M.
, and
Nayfeh
,
A. H.
, 2005, “
Modeling and Design of Variable-Geometry Electrostatic Microactuators
,”
J. Micromech. Microeng.
0960-1317,
15
(
3
), pp.
419
429
.
51.
Nayfeh
,
A. H.
, and
Younis
,
M. I.
, 2005, “
Dynamics of MEMS Resonators Under Superharmonic and Subharmonic Excitations
,”
J. Micromech. Microeng.
0960-1317,
15
(
10
), pp.
1840
1847
.
52.
Younis
,
M. I.
, and
Nayfeh
,
A. H.
, 2003, “
A Study of the Nonlinear Response of a Resonant Microbeam to an Electric Actuation
,”
Nonlinear Dyn.
0924-090X,
31
(
1
), pp.
91
117
.
53.
Kaajakari
,
V.
,
Mattila
,
T.
,
Oja
,
A.
, and
Seppa
,
H.
, 2004, “
Nonlinear Limits for Single-Crystal Silicon Microresonators
,”
J. Microelectromech. Syst.
1057-7157,
13
(
5
), pp.
715
724
.
54.
Jeong
,
H. -M.
, and
Ha
,
S. K.
, 2005, “
Dynamic Analysis of a Resonant Comb-Drive Micro-Actuator in Linear and Nonlinear Regions
,”
Sens. Actuators, A
0924-4247,
125
(
1
), pp.
59
68
.
55.
Agarwal
,
M.
,
Chandorkar
,
S. A.
,
Mehta
,
H.
,
Candler
,
R. N.
,
Kim
,
B.
,
Hopcroft
,
M. A.
,
Melamud
,
R.
,
Jha
,
C. M.
,
Bahl
,
G.
,
Yama
,
G.
,
Kenny
,
T. W.
, and
Murmann
,
B.
, 2008, “
A Study of Electrostatic Force Nonlinearities in Resonant Microstructures
,”
Appl. Phys. Lett.
0003-6951,
92
, p.
104106
.
56.
Agarwal
,
M.
,
Mehta
,
H.
,
Candler
,
R. N.
,
Chandorkar
,
S. A.
,
Kim
,
B.
,
Hopcroft
,
M. A.
,
Melamud
,
R.
,
Bahl
,
G.
,
Kenny
,
T. W.
, and
Murmann
,
B.
, 2007, “
Scaling of Amplitude-Frequency-Dependence Nonlinearities in Electrostatically Transduced Microresonators
,”
J. Appl. Phys.
0021-8979,
102
, p.
074903
.
57.
Shao
,
L. C.
,
Palaniapan
,
M.
,
Tan
,
W. W.
, and
Khine
,
L.
, 2008, “
Nonlinearity in Micromechanical Free-Free Beam Resonators: Modeling and Experimental Verification
,”
J. Micromech. Microeng.
0960-1317,
18
(
2
), p.
025017
.
58.
Dick
,
A. J.
,
Balachandran
,
B.
,
DeVoe
,
D. L.
, and
Mote
,
C. D.
, Jr.
, 2006, “
Parametric Identification of Piezoelectric Microscale Resonators
,”
J. Micromech. Microeng.
0960-1317,
16
(
8
), pp.
1593
1601
.
59.
Li
,
H.
,
Preidikman
,
S.
,
Balachandran
,
B.
, and
Mote
,
C. D.
, Jr.
, 2006, “
Nonlinear Free and Forced Oscillations of Piezoelectric Microresonators
,”
J. Micromech. Microeng.
0960-1317,
16
(
2
), pp.
356
367
.
60.
Mahmoodi
,
S. N.
, and
Jalili
,
N.
, 2007, “
Non-Linear Vibrations and Frequency Response Analysis of Piezoelectrically Driven Microcantilevers
,”
Int. J. Non-Linear Mech.
0020-7462,
42
(
4
), pp.
577
587
.
61.
Mahmoodi
,
S. N.
,
Jalili
,
N.
, and
Daqaq
,
M. F.
, 2008, “
Modeling, Nonlinear Dynamics, and Identification of a Piezoelectrically Actuated Microcantilever Sensor
,”
IEEE/ASME Trans. Mechatron.
1083-4435,
13
(
1
), pp.
58
65
.
62.
Evoy
,
S.
,
Carr
,
D. W.
,
Sekaric
,
L.
,
Olkhovets
,
A.
,
Parpia
,
J. M.
, and
Craighead
,
H. G.
, 1999, “
Nanofabrication and Electrostatic Operation of Single-Crystal Silicon Paddle Oscillators
,”
J. Appl. Phys.
0021-8979,
86
(
11
), pp.
6072
6077
.
63.
Sazonova
,
V.
,
Yaish
,
Y.
,
Ustunel
,
H.
,
Roundy
,
D.
,
Arias
,
T. A.
, and
McEuen
,
P. L.
, 2004, “
A Tunable Carbon Nanotube Electromechanical Oscillator
,”
Nature (London)
0028-0836,
431
(
7006
), pp.
284
287
.
64.
Huang
,
X. M. H.
,
Feng
,
X. L.
,
Zorman
,
C. A.
,
Mehregany
,
M.
, and
Roukes
,
M. L.
, 2005, “
VHF, UHF and Microwave Frequency Nanomechanical Resonators
,”
New J. Phys.
1367-2630,
7
(
247
), pp.
1
15
.
65.
Husain
,
A.
,
Hone
,
J.
,
Postma
,
H. W. C.
,
Huang
,
X. M. H.
,
Drake
,
T.
,
Barbic
,
M.
,
Scherer
,
A.
, and
Roukes
,
M. L.
, 2003, “
Nanowire-Based Very-High-Frequency Electromechanical Resonator
,”
Appl. Phys. Lett.
0003-6951,
83
(
6
), pp.
1240
1242
.
66.
Feng
,
X. L.
,
He
,
R.
,
Yang
,
P.
, and
Roukes
,
M. L.
, 2007, “
Very High Frequency Silicon Nanowire Electromechanical Resonators
,”
Nano Lett.
1530-6984,
7
(
7
), pp.
1953
1959
.
67.
Zaitsev
,
S.
,
Almog
,
R.
,
Shtempluck
,
O.
, and
Buks
,
E.
, 2005, “
Nonlinear Dynamics in Nanomechanical Oscillators
,”
Proceeding of the ICMENS’05: The 2005 International Conference on MEMS, NANO, and Smart Systems
, pp.
387
391
.
68.
Li
,
T. F.
,
Pashkin
,
Y. A.
,
Astafiev
,
O.
,
Nakamura
,
Y.
,
Tsai
,
J. S.
, and
Im
,
H.
, 2008, “
High-Frequency Metallic Nanomechanical Resonators
,”
Appl. Phys. Lett.
0003-6951,
92
, p.
043112
.
69.
Postma
,
H. W. C.
,
Kozinsky
,
I.
,
Husain
,
A.
, and
Roukes
,
M. L.
, 2005, “
Dynamic Range of Nanotube- and Nanowire-Based Electromechanical Systems
,”
Appl. Phys. Lett.
0003-6951,
86
, p.
223105
.
70.
Erbe
,
A.
,
Krommer
,
H.
,
Kraus
,
A.
,
Blick
,
R. H.
,
Corso
,
G.
, and
Richter
,
K.
, 2000, “
Mechanical Mixing in Nonlinear Nanomechanical Resonators
,”
Appl. Phys. Lett.
0003-6951,
77
(
19
), pp.
3102
3104
.
71.
Alastalo
,
A. T.
, and
Kaajakari
,
V.
, 2005, “
Intermodulation in Capactitively Coupled Microelectromechanical Filters
,”
IEEE Electron Device Lett.
0741-3106,
26
(
5
), pp.
289
291
.
72.
Alastalo
,
A. T.
, and
Kaajakari
,
V.
, 2006, “
Third-Order Intermodulation in Microelectromechanical Filters Coupled With Capacitive Transducers
,”
J. Microelectromech. Syst.
1057-7157,
15
(
1
), pp.
141
148
.
73.
Koskenvuori
,
M.
, and
Tittonen
,
I.
, 2008, “
GHz-Range FSK-Reception With Microelectromechanical Resonators
,”
Sens. Actuators, A
0924-4247,
142
(
1
), pp.
346
351
.
74.
Koskenvuori
,
M.
, and
Tittonen
,
I.
, 2008, “
Towards Micromechanical Radio: Overtone Excitations of a Microresonator Through the Nonlinearities of the Second and Third Order
,”
J. Microelectromech. Syst.
1057-7157,
17
(
2
), pp.
363
369
.
75.
Almog
,
R.
,
Zaitsev
,
S.
,
Shtempluck
,
O.
, and
Buks
,
E.
, 2006, “
High Intermodulation Gain in a Micromechanical Duffing Resonator
,”
Appl. Phys. Lett.
0003-6951,
88
, p.
213509
.
76.
Almog
,
R.
,
Zaitsev
,
S.
,
Shtempluck
,
O.
, and
Buks
,
E.
, 2007, “
Noise Squeezing in a Nanomechanical Duffing Resonator
,”
Phys. Rev. Lett.
0031-9007,
98
, p.
078103
.
77.
Buks
,
E.
, and
Yurke
,
B.
, 2006, “
Mass Detection With Nonlinear Nanomechanical Resonator
,”
Phys. Rev. E
1063-651X,
74
, p.
046619
.
78.
Greywall
,
D. S.
, 2005, “
Sensitive Magnetometer Incorporating a High-Q Nonlinear Mechanical Resonator
,”
Meas. Sci. Technol.
0957-0233,
16
(
12
), pp.
2473
2482
.
79.
Choi
,
S.
,
Kim
,
S. -H.
,
Yoon
,
Y. -K.
, and
Allen
,
M. G.
, 2007, “
Exploitation of Nonlinear Effects for Enhancement of the Sensing Performance of Resonant Sensors
,”
Proceedings of the Transducers 2007: The 2007 International Solid-State Sensors, Actuators, and Microsystems Conference
, pp.
1745
1748
.
80.
Liu
,
J.
,
Martin
,
D. T.
,
Kadirvel
,
K.
,
Nishida
,
T.
,
Cattafesta
,
L.
,
Sheplak
,
M.
, and
Mann
,
B. P.
, 2008, “
Nonlinear Model and System Identification of a Capacitive Dual-Backplate MEMS Microphone
,”
J. Sound Vib.
0022-460X,
309
(
1–2
), pp.
276
292
.
81.
Agarwal
,
M.
,
Chandorkar
,
S. A.
,
Candler
,
R. N.
,
Kim
,
B.
,
Hopcroft
,
M. A.
,
Melamud
,
R.
,
Jha
,
C. M.
,
Kenny
,
T. W.
, and
Murmann
,
B.
, 2006, “
Optimal Drive Condition for Nonlinearity Reduction in Electrostatic Microresonators
,”
Appl. Phys. Lett.
0003-6951,
89
, p.
214105
.
82.
Agarwal
,
M.
,
Park
,
K.
,
Candler
,
R.
,
Hopcroft
,
M.
,
Jha
,
C.
,
Melamud
,
R.
,
Kim
,
B.
,
Murmann
,
B.
, and
Kenny
,
T. W.
, 2005, “
Non-Linearity Cancellation in MEMS Resonators for Improved Power Handling
,”
Proceedings of the IEDM 2005: The 2005 IEEE International Electron Devices Meeting
, pp.
286
289
.
83.
Shao
,
L. C.
,
Palaniapan
,
M.
, and
Tan
,
W. W.
, 2008, “
The Nonlinearity Cancellation Phenomenon in Micromechanical Resonators
,”
J. Micromech. Microeng.
0960-1317,
18
, p.
065014
.
84.
Kozinsky
,
I.
,
Postma
,
H. W. C.
,
Bargatin
,
I.
, and
Roukes
,
M. L.
, 2006, “
Tuning Nonlinearity, Dynamic Range, and Frequency of Nanomechanical Resonators
,”
Appl. Phys. Lett.
0003-6951,
88
, p.
253101
.
85.
Scheible
,
D. V.
,
Erbe
,
A.
,
Blick
,
R. H.
, and
Corso
,
G.
, 2002, “
Evidence of A Nanomechanical Resonator Being Driven Into Chaotic Response via the Ruelle-Takens Route
,”
Appl. Phys. Lett.
0003-6951,
81
(
10
), pp.
1884
1886
.
86.
Berge
,
P.
,
Pomeau
,
Y.
, and
Vidal
,
C.
, 1984,
Order Within Chaos
,
Hermann
,
Paris, France
.
87.
Gottlieb
,
O.
,
Gemintern
,
A.
, and
Blick
,
R. H.
, 2007, “
Bifurcations and Chaos in an Experimental Based Quasi-Continuum Nonlinear Dynamical System for the Clapper Nanoresonator
,”
Proceedings of the IDETC 2007: The 2007 ASME International Design Engineering Technical Conferences, First Conference on Micro- and Nanosystems
.
88.
Liu
,
S.
,
Davidson
,
A.
, and
Lin
,
Q.
, 2004, “
Simulation Studies on Nonlinear Dynamics and Chaos in a MEMS Cantilever Control System
,”
J. Micromech. Microeng.
0960-1317,
14
(
7
), pp.
1064
1073
.
89.
De
,
S. K.
, and
Aluru
,
N. R.
, 2006, “
Complex Nonlinear Oscillations in Electrostatically Actuated Microstructures
,”
J. Microelectromech. Syst.
1057-7157,
15
(
2
), pp.
355
369
.
90.
De
,
S. K.
, and
Aluru
,
N. R.
, 2005, “
Complex Oscillations and Chaos in Electrostatic Microelectromechanical Systems Under Superharmonic Excitations
,”
Phys. Rev. Lett.
0031-9007,
94
, p.
204101
.
91.
Park
,
K.
,
Chen
,
Q.
, and
Lai
,
Y.
, 2008, “
Energy Enhancement and Chaos Control in Microelectromechanical Systems
,”
Phys. Rev. E
1063-651X,
77
, p.
026210
.
92.
Aldridge
,
J. S.
, and
Cleland
,
A. N.
, 2005, “
Noise-Enabled Precision Measurements of a Duffing Nanomechanical Resonator
,”
Phys. Rev. Lett.
0031-9007,
94
, p.
156403
.
93.
Stambaugh
,
C.
, and
Chan
,
H. B.
, 2006, “
Supernarrow Spectral Peaks Near a Kinetic Phase Transition in a Driven Nonlinear Micromechanical Oscillator
,”
Phys. Rev. Lett.
0031-9007,
97
, p.
110602
.
94.
Stambaugh
,
C.
, and
Chan
,
H. B.
, 2006, “
Noise-Activated Switching in a Driven Nonlinear Micromechanical Oscillator
,”
Phys. Rev. B
0163-1829,
73
, p.
172302
.
95.
Kozinsky
,
I.
,
Postma
,
H. W. C.
,
Kogan
,
O.
,
Husain
,
A.
, and
Roukes
,
M. L.
, 2007, “
Basins of Attraction of a Nonlinear Nanomechanical Resonator
,”
Phys. Rev. Lett.
0031-9007,
99
(
20
), p.
207201
.
96.
Badzey
,
R. L.
,
Zolfagharkhani
,
G.
,
Gaidarzhy
,
A.
, and
Mohanty
,
P.
, 2004, “
A Controllable Nanomechanical Memory Element
,”
Appl. Phys. Lett.
0003-6951,
85
(
16
), pp.
3587
3589
.
97.
Badzey
,
R. L.
,
Zolfagharkhani
,
G.
,
Gaidarzhy
,
A.
, and
Mohanty
,
P.
, 2005, “
Temperature Dependence of a Nanomechanical Switch
,”
Appl. Phys. Lett.
0003-6951,
86
, p.
023106
.
98.
Guerra
,
D. N.
,
Imboden
,
M.
, and
Mohanty
,
P.
, 2008, “
Electrostatically Actuated Silicon-Based Nanomechanical Switch at Room Temperature
,”
Appl. Phys. Lett.
0003-6951,
93
, p.
033515
.
99.
Chan
,
H. B.
, and
Stambaugh
,
C.
, 2006, “
Fluctuation-Enhanced Frequency Mixing in a Nonlinear Micromechanical Oscillator
,”
Phys. Rev. B
0163-1829,
73
, p.
224301
.
100.
Almog
,
R.
,
Zaitsev
,
S.
,
Shtempluck
,
O.
, and
Buks
,
E.
, 2007, “
Signal Amplification in a Nanomechanical Duffing Resonator via Stochastic Resonance
,”
Appl. Phys. Lett.
0003-6951,
90
, p.
013508
.
101.
Nayfeh
,
A. H.
, and
Mook
,
D. T.
, 1995,
Nonlinear Oscillations
,
Wiley-Interscience
,
New York
.
102.
Carr
,
D. W.
,
Evoy
,
S.
,
Sekaric
,
L.
,
Craighead
,
H. G.
, and
Parpia
,
J. M.
, 2000, “
Parametric Amplification in a Torsional Microresonator
,”
Appl. Phys. Lett.
0003-6951,
77
(
10
), pp.
1545
1547
.
103.
Olkhovets
,
A.
,
Carr
,
D. W.
,
Parpia
,
J. M.
, and
Craighead
,
H. G.
, 2001, “
Non-Degenerate Nanomechanical Parametric Amplifier
,”
Proceedings of the MEMS 2001: The 14th IEEE International Conference on Micro Electro Mechanical Systems
, pp.
298
300
.
104.
Ataman
,
C.
,
Kaya
,
O.
, and
Urey
,
H.
, 2004, “
Analysis of Parametric Resonances in Comb-Driven Microscanners
,”
Proc. SPIE
0277-786X,
5455
, pp.
128
136
.
105.
Ataman
,
C.
, and
Urey
,
H.
, 2006, “
Modeling and Characterization of Comb-Actuated Resonant Microscanners
,”
J. Micromech. Microeng.
0960-1317,
16
(
1
), pp.
9
16
.
106.
Ataman
,
C.
, and
Urey
,
H.
, 2004, “
Nonlinear Frequency Response of Comb-Driven Microscanners
,”
Proc. SPIE
0277-786X,
5348
, pp.
166
174
.
107.
Urey
,
H.
,
Kan
,
C.
, and
Ataman
,
C.
, 2004, “
Dynamic Modeling of Comb-Driven Microscanners
,”
Proceedings of the International Conference on Optical MEMS and Their Applications (IEEE/LEOS Optical MEMS 2004)
, pp.
186
187
.
108.
Mahboob
,
I.
, and
Yamaguchi
,
H.
, 2008, “
Bit Storage and Bit Flip Operations in an Electromechanical Oscillator
,”
Nat. Nanotechnol.
1748-3387,
3
(
5
), pp.
275
279
.
109.
Kaajakari
,
V.
, and
Lal
,
A.
, 2004, “
Parametric Excitation of Circular Micromachined Silicon Disks
,”
Appl. Phys. Lett.
0003-6951,
85
(
17
), pp.
3923
3925
.
110.
Zalalutdinov
,
M.
,
Olkhovets
,
A.
,
Zehnder
,
A.
,
Ilic
,
B.
,
Czaplewski
,
D.
,
Craighead
,
H. G.
, and
Parpia
,
J. M.
, 2001, “
Optically Pumped Parametric Amplification for Micromechanical Oscillators
,”
Appl. Phys. Lett.
0003-6951,
78
(
20
), pp.
3142
3144
.
111.
Yu
,
M. -F.
,
Wagner
,
G. J.
,
Ruoff
,
R. S.
, and
Dyer
,
M. J.
, 2002, “
Realization of Parametric Resonances in a Nanowire Mechanical System With Nanomanipulation Inside a Scanning Electron Microscope
,”
Phys. Rev. B
0163-1829,
66
, p.
073406
.
112.
Ahmad
,
A.
, and
Tripathi
,
V. K.
, 2005, “
Parametric Excitation of Higher-Order Electromechanical Vibrations of Carbon Nanotubes
,”
Phys. Rev. B
0163-1829,
72
, p.
193409
.
113.
Liu
,
C. S.
, and
Tripathi
,
V. K.
, 2004, “
Observational Consequences of Parametrically Driven Vibrations of Carbon Nanotubes
,”
Phys. Rev. B
0163-1829,
70
, p.
115414
.
114.
Zhang
,
W.
,
Baskaran
,
R.
, and
Turner
,
K. L.
, 2003, “
Tuning the Dynamic Behavior of Parametric Resonance in a Micromechanical Oscillator
,”
Appl. Phys. Lett.
0003-6951,
82
(
1
), pp.
130
132
.
115.
Zhang
,
W.
,
Baskaran
,
R.
, and
Turner
,
K. L.
, 2002, “
Effect of Cubic Nonlinearity on Auto-Parametrically Amplified Resonant MEMS Mass Sensor
,”
Sens. Actuators, A
0924-4247,
102
(
1–2
), pp.
139
150
.
116.
Rhoads
,
J. F.
,
Shaw
,
S. W.
,
Turner
,
K. L.
, and
Baskaran
,
R.
, 2005, “
Tunable Microelectromechanical Filters That Exploit Parametric Resonance
,”
ASME J. Vibr. Acoust.
0739-3717,
127
(
5
), pp.
423
430
.
117.
Napoli
,
M.
,
Baskaran
,
R.
,
Turner
,
K.
, and
Bamieh
,
B.
, 2003, “
Understanding Mechanical Domain Parametric Resonance in Microcantilevers
,”
Proceedings of the MEMS 2003: The IEEE 16th Annual International Conference on Micro Electro Mechanical Systems
, pp.
169
172
.
118.
Napoli
,
M.
,
Olroyd
,
C.
,
Bamieh
,
B.
, and
Turner
,
K.
, 2005, “
A Novel Sensing Scheme for the Displacement of Electrostatically Actuated Microcantilevers
,”
Proceedings of the 2005 American Control Conference
, pp.
2475
2480
.
119.
Zhang
,
W.
, and
Meng
,
G.
, 2005, “
Nonlinear Dynamical System of Micro-Cantilever Under Combined Parametric and Forcing Excitations in MEMS
,”
Sens. Actuators, A
0924-4247,
119
(
2
), pp.
291
299
.
120.
Zhang
,
W. -M.
, and
Meng
,
G.
, 2007, “
Nonlinear Dynamic Analysis of Electrostatically Actuated Resonant MEMS Sensors Under Parametric Excitation
,”
IEEE Sens. J.
1530-437X,
7
(
3
), pp.
370
380
.
121.
Rhoads
,
J. F.
,
Shaw
,
S. W.
,
Turner
,
K. L.
,
Moehlis
,
J.
,
DeMartini
,
B. E.
, and
Zhang
,
W.
, 2006, “
Generalized Parametric Resonance in Electrostatically Actuated Microelectromechanical Oscillators
,”
J. Sound Vib.
0022-460X,
296
(
4–5
), pp.
797
829
.
122.
Rhoads
,
J. F.
,
Shaw
,
S. W.
,
Turner
,
K. L.
,
DeMartini
,
B. E.
,
Moehlis
,
J.
, and
Zhang
,
W.
, 2005, “
Generalized Parametric Resonance in Electrostatically-Actuated Microelectromechanical Systems [Abstract]
,”
Proceedings of the ENOC 2005: The Fifth EUROMECH Nonlinear Dynamics Conference
.
123.
Rhoads
,
J. F.
,
Shaw
,
S. W.
, and
Turner
,
K. L.
, 2006, “
The Nonlinear Response of Resonant Microbeam Systems With Purely-Parametric Electrostatic Actuation
,”
J. Micromech. Microeng.
0960-1317,
16
(
5
), pp.
890
899
.
124.
Rhoads
,
J. F.
,
Shaw
,
S. W.
,
Turner
,
K. L.
,
Moehlis
,
J.
,
DeMartini
,
B. E.
, and
Zhang
,
W.
, 2005, “
Nonlinear Response of Parametrically-Excited MEMS
,”
Proceedings of the IDETC/CIE 2005: The 2005 ASME International Design Engineering Technical Conferences, 20th Biennial Conference on Mechanical Vibration and Noise
.
125.
Baskaran
,
R.
, and
Turner
,
K. L.
, 2003, “
Mechanical Domain Coupled Mode Parametric Resonance and Amplification in a Torsional Mode Micro Electro Mechanical Oscillator
,”
J. Micromech. Microeng.
0960-1317,
13
(
5
), pp.
701
707
.
126.
Shaw
,
S. W.
,
Turner
,
K. L.
,
Rhoads
,
J. F.
, and
Baskaran
,
R.
, 2003, “
Parametrically Excited MEMS-Based Filters
,”
Proceedings of the IUTAM Symposium on Chaotic Dynamics and Control of Systems and Processes in Mechanics
,
G.
Rega
and
F.
Vestroni
, eds.,
Springer
,
New York
, Vol.
122
, pp.
137
146
.
127.
Zhang
,
W.
,
Baskaran
,
R.
, and
Turner
,
K. L.
, 2002, “
Nonlinear Dynamics Analysis Of A Parametrically Resonant MEMS Sensor
,”
Proceedings of the 2002 SEM Annual Conference and Exposition on Experimental and Applied Mechanics
.
128.
Adams
,
S. G.
,
Bertsch
,
F.
,
Shaw
,
K. A.
,
Hartwell
,
P. G.
,
Moon
,
F. C.
, and
MacDonald
,
N. C.
, 1998, “
Capacitance Based Tunable Resonators
,”
J. Microelectromech. Syst.
1057-7157,
8
(
1
), pp.
15
23
.
129.
Zhang
,
W.
, and
Turner
,
K. L.
, 2005, “
Application of Parametric Resonance Amplification in a Single-Crystal Silicon Micro-Oscillator Based Mass Sensor
,”
Sens. Actuators, A
0924-4247,
122
(
1
), pp.
23
30
.
130.
Requa
,
M. V.
, and
Turner
,
K. L.
, 2006, “
Electromechanically Driven and Sensed Parametric Resonance in Silicon Microcantilevers
,”
Appl. Phys. Lett.
0003-6951,
88
, p.
263508
.
131.
Requa
,
M. V.
, 2006, “
Parametric Resonance in Microcantilevers for Applications In Mass Sensing
,” Ph.D. thesis, University of California, Santa Barbara.
132.
Cleland
,
A. N.
, 2005, “
Thermomechanical Noise Limits on Parametric Sensing With Nanomechanical Resonators
,”
New J. Phys.
1367-2630,
7
(
235
), pp.
1
16
.
133.
Requa
,
M. V.
, and
Turner
,
K. L.
, 2007, “
Precise Frequency Estimation in a Microelectromechanical Parametric Resonator
,”
Appl. Phys. Lett.
0003-6951,
90
, p.
173508
.
134.
Wang
,
Y. C.
,
Adams
,
S. G.
,
Thorp
,
J. S.
,
MacDonald
,
N. C.
,
Hartwell
,
P.
, and
Bertsch
,
F.
, 1998, “
Chaos in MEMS, Parameter Estimation and Its Potential Application
,”
IEEE Trans. Circuits Syst., I: Fundam. Theory Appl.
1057-7122,
45
(
10
), pp.
1013
1020
.
135.
Rhoads
,
J. F.
, 2007, “
Exploring and Exploiting Resonance in Coupled and/or Nonlinear Microelectromechanical Oscillators
,” Ph.D. thesis, Michigan State University, East Lansing, MI.
136.
Yazdi
,
N.
,
Ayazi
,
F.
, and
Najafi
,
K.
, 1998, “
Micromachined Inertial Sensors
,”
Proc. IEEE
0018-9219,
86
(
8
), pp.
1640
1659
.
137.
Oropeza-Ramos
,
L. A.
, and
Turner
,
K. L.
, 2005, “
Parametric Resonance Amplification in a MEM Gyroscope
,”
Proceedings of the IEEE Sensors 2005: The Fourth IEEE Conference on Sensors
.
138.
Oropeza-Ramos
,
L. A.
, 2007, “
Investigations on Novel Platforms of Micro Electro Mechanical Inertial Sensors: Analysis, Construction and Experimentation
,” Ph.D. thesis, University of California, Santa Barbara, Santa Barbara, CA.
139.
Miller
,
N. J.
,
Shaw
,
S. W.
,
Oropeza-Ramos
,
L. A.
, and
Turner
,
K. L.
, 2008, “
A MEMS-Based Rate Gyro Based on Parametric Resonance
,”
Proceedings of the ESDA 2008: The 9th Biennial ASME Conference on Engineering Systems Design and Analysis
.
140.
Miller
,
N. J.
,
Shaw
,
S. W.
,
Oropeza-Ramos
,
L. A.
, and
Turner
,
K. L.
, 2008, “
Analysis of a Novel MEMS Gyroscope Actuated by Parametric Resonance
,”
Proceedings of the ENOC 2008: The 6th EUROMECH Nonlinear Dynamics Conference
.
141.
Chan
,
H. B.
, and
Stambaugh
,
C.
, 2007, “
Activation Barrier Scaling and Crossover for Noise-Induced Switching in a Micromechanical Parametric Oscillator
,”
Phys. Rev. Lett.
0031-9007,
99
, p.
060601
.
142.
Chan
,
H. B.
,
Dykman
,
M. I.
, and
Stambaugh
,
C.
, 2008, “
Paths of Fluctuation Induced Switching
,”
Phys. Rev. Lett.
0031-9007,
100
, p.
130602
.
143.
Howson
,
D. P.
, and
Smith
,
R. B.
, 1970,
Parametric Amplifiers
(
European Electrical and Electron Engineering Series
),
McGraw-Hill
,
London
.
144.
Louisell
,
W. H.
, 1960,
Coupled Mode and Parametric Electronics
,
Wiley
,
New York
.
145.
Mumford
,
W. W.
, 1960, “
Some Notes on the History of Parametric Transducers
,”
Proc. IRE
0096-8390,
48
(
5
), pp.
848
853
.
146.
Rugar
,
D.
, and
Grutter
,
P.
, 1991, “
Mechanical Parametric Amplification and Thermomechanical Noise Squeezing
,”
Phys. Rev. Lett.
0031-9007,
67
(
6
), pp.
699
702
.
147.
Gallacher
,
B. J.
,
Burdess
,
J. S.
,
Harris
,
A. J.
, and
Harish
,
K. M.
, 2005, “
Active Damping Control in MEMS Using Parametric Pumping
,”
Proceedings of the Nanotech 2005: The 2005 NSTI Nanotechnology Conference and Trade Show
, Vol.
7
, pp.
383
386
.
148.
Gallacher
,
B. J.
,
Burdess
,
J. S.
, and
Harish
,
K. M.
, 2006, “
A Control Scheme for a MEMS Electrostatic Resonant Gyroscope Excited Using Combined Parametric Excitation and Harmonic Forcing
,”
J. Micromech. Microeng.
0960-1317,
16
(
2
), pp.
320
331
.
149.
Raskin
,
J. -P.
,
Brown
,
A. R.
,
Khuri-Yakub
,
B. T.
, and
Rebeiz
,
G. M.
, 2000, “
A Novel Parametric-Effect MEMS Amplifier
,”
J. Microelectromech. Syst.
1057-7157,
9
(
4
), pp.
528
537
.
150.
Koskenvuori
,
M.
, and
Tittonen
,
I.
, 2008, “
Parametrically Amplified Microelectromechanical Mixer
,”
Proceedings of the MEMS 2008: The 21st IEEE International Conference on Micro Electro Mechanical Systems
, pp.
1044
1047
.
151.
Dâna
,
A.
,
Ho
,
F.
, and
Yamamoto
,
Y.
, 1998, “
Mechanical Parametric Amplification in Piezoresistive Gallium Arsenide Microcantilevers
,”
Appl. Phys. Lett.
0003-6951,
72
(
10
), pp.
1152
1154
.
152.
Roukes
,
M. L.
,
Ekinci
,
K. L.
,
Yang
,
Y. T.
,
Huang
,
X. M. H.
,
Tang
,
H. X.
,
Harrington
,
D. A.
,
Casey
,
J.
, and
Artlett
,
J. L.
, 2004,
An Apparatus and Method for Two-Dimensional Electron Gas Actuation and Transduction for GaAs NEMS
. International Patent No. WO/2004/041998.
153.
Ono
,
T.
,
Wakamatsu
,
H.
, and
Esashi
,
M.
, 2005, “
Parametrically Amplified Thermal Resonant Sensor With Pseudo-Cooling Effect
,”
J. Micromech. Microeng.
0960-1317,
15
(
12
), pp.
2282
2288
.
154.
Mahboob
,
I.
, and
Yamaguchi
,
H.
, 2008, “
Parametrically Pumped Ultrahigh Q Electromechanical Resonator
,”
Appl. Phys. Lett.
0003-6951,
92
, p.
253109
.
155.
Rhoads
,
J. F.
, and
Shaw
,
S. W.
, 2008, “
The Effects of Nonlinearity on Parametric Amplifiers
,”
Procedings of the IDETC/CIE 2008: The ASME 2008 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Second International Conference on Micro- and Nanosystems
.
156.
Abdel-Rahman
,
E. M.
,
Hammad
,
B. K.
, and
Nayfeh
,
A. H.
, 2005, “
Simulation of a MEMS RF Filter
,”
Proceedings of the IDETC/CIE 2005: The 2005 ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
.
157.
Hammad
,
B. K.
,
Abdel-Rahman
,
E. M.
, and
Nayfeh
,
A. H.
, 2006, “
Characterization of a Tunable MEMS RF Filter
,”
Proceedings of the IMECE 2006: The 2006 ASME International Mechanical Engineering Congress and Exposition
.
158.
Hammad
,
B. K.
,
Nayfeh
,
A. H.
, and
Abdel-Rahman
,
E.
, 2007, “
A Discretization Approach to Modeling Capacitive MEMS Filters
,”
Proceedings of the IMECE 2007: The 2007 ASME International Mechanical Engineering Congress and Exposition
.
159.
Hammad
,
B. K.
,
Nayfeh
,
A. H.
, and
Abdel-Rahman
,
E.
, 2007, “
A Subharmonic Resonance-Based MEMS Filter
,”
Proceedings of the IMECE 2007: The 2007 ASME International Mechanical Engineering Congress and Exposition
.
160.
Bannon
,
F. D.
, III
,
Clark
,
J. R.
, and
Nguyen
,
C. T.-C.
, 1996, “
High Frequency Microelectromechanical IF Filters
,”
Proceedings of the IEEE International Electron Devices Meeting
.
161.
Buks
,
E.
, and
Roukes
,
M. L.
, 2002, “
Electrically Tunable Collective Response in a Coupled Micromechanical Array
,”
J. Microelectromech. Syst.
1057-7157,
11
(
6
), pp.
802
807
.
162.
Pourkamali
,
S.
, and
Ayazi
,
F.
, 2005, “
Electrically Coupled MEMS Bandpass Filters, Part I: With Coupling Elements
,”
Sens. Actuators, A
0924-4247,
122
(
2
), pp.
307
316
.
163.
Pourkamali
,
S.
, and
Ayazi
,
F.
, 2005, “
Electrically Coupled MEMS Bandpass Filters, Part II: Without Coupling Elements
,”
Sens. Actuators, A
0924-4247,
122
(
2
), pp.
317
325
.
164.
Porfiri
,
M.
, 2008, “
Vibrations of Parallel Arrays of Electrostatically Actuated Microplates
,”
J. Sound Vib.
0022-460X,
315
(
4–5
), pp.
1071
1085
.
165.
Zhu
,
J.
,
Ru
,
C. Q.
, and
Mioduchowski
,
A.
, 2006, “
Stuctural Instability of A Parallel Array of Mutually Attracting Identical Microbeams
,”
J. Micromech. Microeng.
0960-1317,
16
(
10
), pp.
2220
2229
.
166.
Napoli
,
M.
,
Zhang
,
W.
,
Turner
,
K.
, and
Bamieh
,
B.
, 2005, “
Characterization of Electrostatically Coupled Microcantilevers
,”
J. Microelectromech. Syst.
1057-7157,
14
(
2
), pp.
295
304
.
167.
Bromberg
,
Y.
,
Cross
,
M. C.
, and
Lifshitz
,
R.
, 2006, “
Response of Discrete Nonlinear Systems With Many Degrees Of Freedom
,”
Phys. Rev. E
1063-651X,
73
, p.
016214
.
168.
Lifshitz
,
R.
, and
Cross
,
M. C.
, 2003, “
Response of Parametrically Driven Nonlinear Coupled Oscillators With Application to Micromechanical and Nanomechanical Resonator Arrays
,”
Phys. Rev. B
0163-1829,
67
, p.
134302
.
169.
Zhu
,
J.
,
Ru
,
C. Q.
, and
Mioduchowski
,
A.
, 2007, “
High-Order Subharmonic Parametric Resonance of Nonlinearly Coupled Micromechanical Oscillators
,”
Eur. Phys. J. B
1434-6028,
58
(
4
), pp.
411
421
.
170.
Gutschmidt
,
S.
, and
Gottlieb
,
O.
, 2008, “
Numerical Analysis of a Three Element Microbeam Array Subject to Electrodynamical Parametric Excitation
,”
Proceedings of the ESDA 2008: The Ninth Biennial ASME Conference on Engineering Systems Design and Analysis
.
171.
Gutschmidt
,
S.
, and
Gottlieb
,
O.
, 2008, “
Nonlinear Internal Resonance of a Microbeam Array Near the Pull-In Point
,”
Proceedings of the ENOC 2008: The Sixth EUROMECH Nonlinear Dynamics Conference
.
172.
Gutschmidt
,
S.
, and
Gottlieb
,
O.
, 2007, “
Internal Resonance in Microbeam Arrays Subject to Electrodynamical Parametric Excitation
,”
Proceedings of the IDETC/CIE 2007: ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Sixth International Conference on Multibody Systems, Nonlinear Dynamics, and Control (MSNDC)
.
173.
Chen
,
Q.
,
Huang
,
L.
, and
Lai
,
Y. -C.
, 2008, “
Chaos-Induced Intrinsic Localized Modes in Coupled Microcantilever Arrays
,”
Appl. Phys. Lett.
0003-6951,
92
, p.
241914
.
174.
Dick
,
A. J.
,
Balachandran
,
B.
, and
Mote
,
C. D.
, Jr.
, 2008, “
Intrinsic Localized Modes in Microresonator Arrays and Their Relationship to Nonlinear Vibration Modes
,”
Nonlinear Dyn.
0924-090X,
54
(
1–2
), pp.
13
29
.
175.
Dick
,
A. J.
,
Balachandran
,
B.
, and
Mote
,
C. D.
, Jr.
, 2006, “
Nonlinear Vibration Modes in Micro-Resonator Arrays
,”
Smart Structures and Materials 2006: Modeling, Signal Processing, and Control
, Vol.
6166
,
D. K.
Lindner
, ed.
176.
Maniadis
,
P.
, and
Flach
,
S.
, 2006, “
Mechanism of Discrete Breather Excitation in Driven Micro-Mechanical Cantilever Arrays
,”
Europhys. Lett.
0295-5075,
74
(
3
), pp.
452
458
.
177.
Sato
,
M.
,
Hubbard
,
B. E.
,
English
,
L. Q.
,
Sievers
,
A. J.
,
Ilic
,
B.
,
Czaplewski
,
D. A.
, and
Craighead
,
H. G.
, 2003, “
Study of Intrinsic Localized Vibrational Modes in Micromechanical Oscillator Arrays
,”
Chaos
1054-1500,
13
(
2
), pp.
702
715
.
178.
Sato
,
M.
,
Hubbard
,
B. E.
, and
Sievers
,
A. J.
, 2006, “
Nonlinear Energy Localization and Its Manipulation in Micromechanical Oscillator Arrays
,”
Rev. Mod. Phys.
0034-6861,
78
(
1
), pp.
137
157
.
179.
Sato
,
M.
,
Hubbard
,
B. E.
,
Sievers
,
A. J.
,
Ilic
,
B.
, and
Craighead
,
H. G.
, 2004, “
Optical Manipulation of Intrinsic Localized Vibrational Energy in Cantilever Arrays
,”
Europhys. Lett.
0295-5075,
66
(
3
), pp.
318
323
.
180.
Sato
,
M.
,
Hubbard
,
B. E.
,
Sievers
,
A. J.
,
Ilic
,
B.
,
Czaplewski
,
D. A.
, and
Craighead
,
H. G.
, 2003, “
Observation of Locked Intrinsic Localized Vibrational Modes in a Micromechanical Oscillator Array
,”
Phys. Rev. Lett.
0031-9007,
90
(
4
), p.
044102
.
181.
Sato
,
M.
, and
Sievers
,
A. J.
, 2007, “
Driven Localized Excitations in the Acoustic Spectrum of Small Nonlinear Macroscopic and Microscopic Lattices
,”
Phys. Rev. Lett.
0031-9007,
98
, p.
214101
.
182.
Campbell
,
D. K.
,
Flach
,
S.
, and
Kivshar
,
Y. S.
, 2004, “
Localizing Energy Through Nonlinearity and Discreteness
,”
Phys. Today
0031-9228,
57
(
1
), pp.
43
49
.
183.
Hoppensteadt
,
F. C.
, and
Izhikevich
,
E. M.
, 2001, “
Synchronization of MEMS Resonators and Mechanical Neurocomputing
,”
IEEE Trans. Circuits Syst., I: Fundam. Theory Appl.
1057-7122,
48
(
2
), pp.
133
138
.
184.
Bennett
,
M.
,
Schatz
,
M. F.
,
Rockwood
,
H.
, and
Wiesenfeld
,
K.
, 2002, “
Huygen’s Clocks
,”
Proc. R. Soc. London, Ser. A
0950-1207,
458
(
2019
), pp.
563
579
.
185.
Cross
,
M. C.
,
Rogers
,
J. L.
,
Lifshitz
,
R.
, and
Zumdieck
,
A.
, 2006, “
Synchronization by Reactive Coupling and Nonlinear Frequency Pulling
,”
Phys. Rev. E
1063-651X,
73
, p.
036205
.
186.
Cross
,
M. C.
,
Zumdieck
,
A.
,
Lifshitz
,
R.
, and
Rogers
,
J. L.
, 2004, “
Synchronization by Nonlinear Frequency Pulling
,”
Phys. Rev. Lett.
0031-9007,
93
, p.
224101
.
187.
Sahai
,
T.
, and
Zehnder
,
A. T.
, 2008, “
Modeling of Coupled Dome-Shaped Microoscillators
,”
J. Microelectromech. Syst.
1057-7157,
17
(
3
), pp.
777
786
.
188.
Zalalutdinov
,
M.
,
Aubin
,
K. L.
,
Reichenbach
,
R. B.
,
Zehnder
,
A. T.
,
Houston
,
B.
,
Parpia
,
J. M.
, and
Craighead
,
H. G.
, 2003, “
Shell-Type Micromechanical Actuator and Resonator
,”
Appl. Phys. Lett.
0003-6951,
83
(
18
), pp.
3815
3817
.
189.
Shim
,
S. -B.
,
Imboden
,
M.
, and
Mohanty
,
P.
, 2007, “
Synchronized Oscillation in Coupled Nanomechanical Oscillators
,”
Science
0036-8075,
316
(
5821
), pp.
95
99
.
190.
Blencowe
,
M.
, 2004, “
Quantum Electromechanical Systems
,”
Phys. Rep.
0370-1573,
395
(
3
), pp.
159
222
.
191.
Ekinci
,
K. L.
,
Yang
,
Y. T.
, and
Roukes
,
M. L.
, 2004, “
Ultimate Limits to Inertial Mass Sensing Based Upon Nanoelectromechanical Systems
,”
J. Appl. Phys.
0021-8979,
95
(
5
), pp.
2682
2689
.
You do not currently have access to this content.