Motility is an important property of immune system cells. It provides cells with the ability to perform their function not only at the right time but also at the right place. In this paper, we introduce the problem of modeling and estimating an effective force field directing cell movement by the analysis of intravital video microscopy. A computational approach is proposed for solving this problem without dealing with a parametrized spatial model of the field in order to avoid potential errors due to inaccurate spatial model assumptions. We consider the dynamics of cells similar to the dynamics of distributed agents typically used in the field of swarm robotics. The method utilizes a fixed-interval Kalman filter based smoother. Its application results in a map giving the intensity and direction of the effective force field. The results show that real-time video images are a source of data, enabling us to visualize intriguing spatiotemporal phenomena inside immune system organs. The proposed approach can fill the existing gap between contemporary technology and quantitative data analyses present in the field of biosystems.

1.
Miller
,
M. J.
,
Wei
,
S. H.
,
Parker
,
I.
, and
Cahalan
,
M. D.
, 2002, “
Two-Photon Imaging of Lymphocyte Motility and Antigen Response in Intact Lymph Node
,”
Science
0036-8075,
296
, pp.
1869
1873
.
2.
Mempel
,
T. R.
,
Henrickson
,
S. E.
, and
von Andrian
,
U. H.
, 2004, “
T-Cell Priming by Dendritic Cells in Lymph Nodes Occurs in Three Distinct Phases
,”
Nature (London)
0028-0836,
427
, pp.
154
159
.
3.
Sumen
,
C.
,
Mempel
,
T. R.
,
Mazo
,
I. B.
, and
von Andrian
,
U. H.
, 2004, “
Intravital Microscopy: Visualizing Immunity in Context
,”
Immunity
1074-7613,
21
, pp.
315
329
.
4.
Milutinović
,
D.
, and
Lima
,
P.
, 2007,
Cells and Robots: Modeling and Control of Large-Size Agent Populations
,
Springer
,
New York
.
5.
Dissanayake
,
M. W. M. G.
,
Newman
,
P.
,
Clark
,
S.
,
Durrant-Whyte
,
H. F.
, and
Csorba
,
M.
, 2001, “
A Solution to the Simultaneous Localization and Map Building (SLAM) Problem
,”
IEEE Trans. Rob. Autom.
1042-296X,
17
(
3
), pp.
229
241
.
6.
Thrun
,
S.
,
Burgard
,
W.
, and
Fox
,
D.
, 2005,
Probabilistic Robotics, Intelligent Robotics and Autonomous Agents
,
MIT
,
Cambridge, MA
.
7.
Bourne
,
H. R.
, and
Weiner
,
O.
, 2002, “
A Chemical Compass
,”
Nature (London)
0028-0836,
419
, p.
21
.
8.
Comer
,
F. I.
, and
Parent
,
C. A.
, 2002, “
PI 3-Kinases and PTEN: How Opposites Chemoattract
,”
Cell
0092-8674,
109
, pp.
541
544
.
9.
Onsum
,
M.
, and
Rao
,
C. V.
, 2007, “
A Mathematical Model for Neutrophil Gradient Sensing and Polarization
,”
PLOS Comput. Biol.
1553-734X,
3
, pp.
436
459
.
10.
Leonard
,
N.
, and
Fiorelli
,
E.
, 2001, “
Virtual Leaders, Artificial Potentials and Coordinated Control of Groups
,”
Proceedings of the IEEE International Conference on Decision and Control
, pp.
2968
2973
.
11.
Tanner
,
H. G.
,
Jadbabaie
,
A.
, and
Pappas
,
G. J.
, 2007, “
Flocking in Fixed and Switching Networks
,”
IEEE Trans. Autom. Control
0018-9286,
52
(
5
), pp.
863
868
.
12.
Olfati-Saber
,
R.
, 2006, “
Flocking for Multi-Agent Dynamic Systems: Algorithms and Theory
,”
IEEE Trans. Autom. Control
0018-9286,
51
(
3
), pp.
401
420
.
13.
Kumar
,
M.
,
Milutinovíc
,
D.
, and
Garg
,
D.
, 2008, “
Role of Stochasticity in Self-Organization of Robotic Swarms
,”
Proceedings of the American Control Conference
, Seattle, WA.
14.
Astrom
,
K. J.
, and
Wittenmark
,
B.
, 1990,
Computer-Controlled Systems: Theory and Design
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
15.
Gelb
,
A.
, 1974,
Applied Optimal Estimation
,
MIT
,
Cambridge, MA
.
You do not currently have access to this content.