In this paper, we develop a framework for solving optimal trajectory generation problems with probabilistic uncertainty in system parameters. The framework is based on the generalized polynomial chaos theory. We consider both linear and nonlinear dynamics in this paper and demonstrate transformation of stochastic dynamics to equivalent deterministic dynamics in higher dimensional state space. Minimum expectation and variance cost function are shown to be equivalent to standard quadratic cost functions of the expanded state vector. Results are shown on a stochastic Van der Pol oscillator.

1.
LaValle
,
S. M.
, 2006,
Planning Algorithms
,
Cambridge University Press
,
Cambridge, UK
.
2.
Bertsekas
,
D. P.
, and
Tsitsiklis
,
J. N.
, 1997,
Neuro-Dynamic Programming
,
Athena Scientific
,
Nashua, NH
.
3.
Bertsekas
,
D. P.
, 2000,
Dynamic Programming and Optimal Control
,
Athena Scientific
,
Nashua, NH
.
4.
Wiener
,
N.
, 1938, “
The Homogeneous Chaos
,”
Am. J. Math.
0002-9327,
60
(
4
), pp.
897
936
.
5.
Cameron
,
R. H.
, and
Martin
,
W. T.
, 1947, “
The Orthogonal Development of Non-Linear Functionals in Series of Fourier-Hermite Functionals
,”
Ann. Math.
0003-486X,
48
(
2
), pp.
385
392
.
6.
Xiu
,
D.
, and
Karniadakis
,
G. E.
, 2002, “
The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations
,”
SIAM J. Sci. Comput. (USA)
1064-8275,
24
(
2
), pp.
619
644
.
7.
Askey
,
R.
, and
Wilson
,
J.
, 1985, “
Some Basic Hypergeometric Polynomials That Generalize Jacobi Polynomials
,”
Mem. Am. Math. Soc.
0065-9266,
319
, pp.
783216
.
8.
Hou
,
T. Y.
,
Luo
,
W.
,
Rozovskii
,
B.
, and
Zhou
,
H. -M.
, 2006, “
Wiener Chaos Expansions and Numerical Solutions of Randomly Forced Equations of Fluid Mechanics
,”
J. Comput. Phys.
0021-9991,
216
(
2
), pp.
687
706
.
9.
Xiu
,
D.
, and
Karniadakis
,
G. E.
, 2003, “
Modeling Uncertainty in Flow Simulations via Generalized Polynomial Chaos
,”
J. Comput. Phys.
0021-9991,
187
(
1
), pp.
137
167
.
10.
Ghanem
,
R. G.
, and
Spanos
,
P. D.
, 1991,
Stochastic Finite Elements: A Spectral Approach
,
Springer-Verlag
,
New York
.
11.
Ghanem
,
R.
, and
Red-Horse
,
J.
, 1999, “
Propagation of Probabilistic Uncertainty in Complex Physical Systems Using a Stochastic Finite Element Approach
,”
Physica D
0167-2789,
133
(
1–4
), pp.
137
144
.
12.
Ghanem
,
R. G.
, 1999, “
Ingredients for a General Purpose Stochastic Finite Elements Implementation
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
168
(
1–4
), pp.
19
34
.
13.
Hover
,
F. S.
, and
Triantafyllou
,
M. S.
, 2006, “
Application of Polynomial Chaos in Stability and Control
,”
Automatica
0005-1098,
42
(
5
), pp.
789
795
.
14.
Hover
,
F. S.
, 2008, “
Gradient Dynamic Optimization With Legendre Chaos
,”
Automatica
0005-1098,
44
(
1
), pp.
135
140
.
15.
Debusschere
,
B. J.
,
Najm
,
H. N.
,
Pébay
,
P. P.
,
Knio
,
O. M.
,
Ghanem
,
R. G.
, and
Le Maître
,
O. P.
, 2004, “
Numerical Challenges in the Use of Polynomial Chaos Representations for Stochastic Processes
,”
SIAM J. Sci. Comput. (USA)
1064-8275,
26
(
2
), pp.
698
719
.
16.
Bhattacharya
,
R.
, 2006, “
OPTRAGEN: A MATLAB Toolbox for Optimal Trajectory Generation
,”
45th IEEE Conference on Decision and Control
, pp.
6832
6836
.
17.
Gill
,
P. E.
,
Murray
,
W.
, and
Saunders
,
M. A.
, 2002, “
SNOPT: An SQP Algorithm for Large-Scale Constrained Optimization
,”
SIAM J. Optim.
1052-6234,
12
(
4
), pp.
979
1006
.
18.
Darlington
,
J.
,
Pantelides
,
C. C.
,
Rustem
,
B.
, and
Tanyi
,
B. A.
, 2000, “
Decreasing the Sensitivity of Open-Loop Optimal Solutions in Decision Making Under Uncertainty
,”
Eur. J. Oper. Res.
0377-2217,
121
(
2
), pp.
343
362
.
19.
Li
,
R.
, and
Ghanem
,
R.
, 1998, “
Adaptive Polynomial Chaos Expansions Applied to Statistics of Extremes in Nonlinear Random Vibration
,”
Probab. Eng. Mech.
0266-8920,
13
, pp.
125
136
.
20.
Wan
,
X.
, and
Karniadakis
,
G. E.
, 2005, “
An Adaptive Multi-Element Generalized Polynomial Chaos Method for Stochastic Differential Equations
,”
J. Comput. Phys.
0021-9991,
209
(
2
), pp.
617
642
.
You do not currently have access to this content.