LuGre dynamic friction model has been widely used in servo system for friction compensation, but it increases the difficulty of controller design because its parameters are difficult to be identified and its internal state is immeasurable. This paper presents a parameter identification technique based on novel evolutionary algorithm (NEA) for LuGre friction model. In order to settle the practical digital implementation problem of LuGre model, this paper also proposes a modified dual-observer with discontinuous mapping and smooth transfer function. On the basis of the parameter identification results and the modified dual-observer, this paper designs an adaptive control algorithm with dynamic friction compensation for hydraulic servo system. The comparative experiments indicate that the proposed parameter identification technique and the adaptive control algorithm with modified dual-observer are effective with high tracking performance.

References

1.
Lischinsky
,
P.
,
Canudas-De-Wit
,
C.
, and
Morel
,
G.
, 1999,
“Friction Compensation for an Industrial Hydraulic Robot,”
IEEE Control Syst. Mag.
,
19
(
1
), pp.
25
32
.
2.
Zeng
,
H.
, and
Sepehri
,
N.
, 2008,
“Tracking Control of Hydraulic Actuators Using a LuGre Friction Model Compensation,”
ASME J. Dyn. Syst., Meas., Control
,
130
(
1
),p.
014502
.
3.
Ge
,
S. S.
,
Lee
,
T. H.
, and
Ren
,
S. X.
, 2001,
“Adaptive Friction Compensation of Servo Mechanisms,”
Int. J. Syst. Sci.
,
32
(
4
), pp.
523
532
.
4.
Armstronghelouvry
,
B.
,
Dupont
,
P.
, and
Dewit
,
C. C.
, 1994,
“A Survey of Models, Analysis Tools and Compensation Methods for the Control of Machines With Friction,”
Automatica
,
30
(
7
), pp.
1083
1138
.
5.
Karnopp
,
D.
, 1985,
“Computer Simulation of Slip-Stick Friction in Mechanical Dynamic Systems,”
ASME J. Dyn. Syst., Meas., Control
,
107
(
1
), pp.
100
103
.
6.
Haessig
,
D. A.
, and
Friedland
,
B.
, 1991,
“On the Modeling and Simulation of Friction,”
ASME J. Dyn. Syst., Meas., Control
,
113
(
3
), pp.
354
362
.
7.
Dahl
,
P. R.
, 1977,
“Measurement of Solid Friction Parameters of Ball Bearings,”
Proceedings of 6th Annual Symposium on Incremental Motion
, Control Systems and Devices, pp.
49
60
.
8.
Canudas De Wit
,
C.
,
Olsson
,
H.
,
Astrom
,
K. J.
, and
Lischinsky
,
P.
, 1995,
“A New Model for Control of Systems With Friction,”
IEEE Trans. Autom. Control
,
40
(
3
), pp.
419
425
.
9.
Canudas De Wit
,
C.
, and
Lischinsky
,
P.
, 1997,
“Adaptive Friction Compensation With Partially Known Dynamic Friction Model,”
Int. J. Adapt. Control Signal Process.
,
11
(
1
), pp.
65
80
.
10.
Hensen
,
R. H. A.
,
Van De Molengraft
,
M. J. G.
, and
Steinbuch
,
M.
, 2002,
“Frequency Domain Identification of Dynamic Friction Model Parameters,”
IEEE Trans. Control Syst. Technol.
,
10
(
2
), pp.
191
196
.
11.
Rizos
,
D. D.
, and
Fassois
,
S. D.
, 2009,
“Friction Identification Based Upon the LuGre and Maxwell Slip Models,”
IEEE Trans. Control Syst. Technol.
,
17
(
1
), pp.
153
160
.
12.
Zglimbea
,
R.
,
Finca
,
V.
,
Greaban
,
E.
, and
Constantin
,
M.
, 2009,
“Identification of Systems With Friction Via Distributions Using the Modified Friction LuGre Model,”
N. E.
Mastorakis
, et al.
, eds.,
Proceedings of the 13th WSEAS International Conference on Systems
,
Athens
, pp.
579
584
.
13.
Tan
,
Y.
, and
Kanellakopoulos
, and
Ioannis
, 1999,
“Adaptive Nonlinear Friction Compensation With Parametric Uncertainties,”
Proceedings of the American Control Conference
, pp.
2511
2515
.
14.
Freidovich
,
L.
,
Robertsson
,
A.
, and
Shiriaev
,
A.
, 2006,
“Friction Compensation Based on LuGre Model,”
in
Proceedings of the 45th IEEE Conference Decision and Control
,
Manchester Grand Hyatt Hotel
,
San Diego, CA
, pp.
3837
3842
.
15.
Nazir
,
M. B.
, and
Wang
,
S.
, 2009,
“Optimization Based on Convergence Velocity and Reliability for Hydraulic Servo System,”
Chin. J. Aeronaut.
,
22
(
4
), pp.
407
412
.
16.
Goodwin
,
G. C.
, and
Mayne
,
D. Q.
, 1987,
“A Parameter Estimation Perspective of Continuous Time Model Reference Adaptive Control,”
Automatica
,
23
(
1
), pp.
57
70
.
17.
Xu
,
L.
, and
Yao
,
B.
, 2008,
“Adaptive Robust Control of Mechanical Systems With Non-Linear Dynamic Friction Compensation,”
Int. J. Control
,
81
(
2
), pp.
167
176
.
18.
Lu
,
L.
,
Yao
,
B.
,
Wang
,
Q. F.
, and
Chen
,
Z.
, 2009,
“Adaptive Robust Control of Linear Motors With Dynamic Friction Compensation Using Modified LuGre Model,”
Automatica
,
45
(
12
), pp.
2890
2896
.
You do not currently have access to this content.