This paper investigates the problem of global stabilization by output feedback for linear time-invariant systems. We give first a procedure to design a robust observer for the linear system. Then using this robust observer with the robust state feedback control law developed by Molander and Willems (1980, “Synthesis of State Feedback Control Laws With a Specified Gain and Phase Margin,” IEEE Trans. Autom. Control, 25(5), pp. 928–931), we construct an output feedback which yields a closed loop system with robustness characteristics. That is, we establish a separation principle. Finally, we give sufficient conditions to establish a robust output feedback for linear polytopic systems.
Issue Section:
Technical Briefs
References
1.
Molander
, P.
, and Willems
, J.
, 1980
, “Synthesis of State Feedback Control Laws With a Specified Gain and Phase Margin
,” IEEE Trans. Autom. Control
, 25
(5
), pp. 928
–931
.10.1109/TAC.1980.11024622.
Khalil
, H.
, 2002
, Nonlinear Systems
, Prentice-Hall
, Upper Saddle River, NJ
.3.
Vidyasagar
, M.
, 1993
, Nonlinear Systems Analysis
, 2nd ed., Prentice Hall
, Englewood Cliffs, NJ
.4.
Arcak
, M.
, and Kokotović
, P. V.
, 1999
, “Observer-Based Stabilization of Systems With Monotonic Nonlinearities
,” Asian J. Control
, 1
, pp. 42
–48
.10.1111/j.1934-6093.1999.tb00005.x5.
Arcak
, M.
, and Kokotović
, P. V.
, 2001
, “Nonlinear Observers: A Circle Criterion Design and Robustness Analysis
,” Automatica
, 37
, pp. 1923
–1930
.10.1016/S0005-1098(01)00160-16.
Fan
, X.
, and Arcak
, M.
, 2003
, “Observer Design for Systems With Multivariable Monotone Nonlinearities
,” Syst. Control Lett.
, 50
, pp. 319
–330
.10.1016/S0167-6911(03)00170-17.
Johansson
, R.
, and Robertsson
, A.
, 2002
, “Observer-Based Strict Positive Real (SPR) Feedback Control System Design
,” Automatica
, 38
, pp. 1557
–1564
.10.1016/S0005-1098(02)00044-48.
Johansson
, R.
, Robertsson
, A.
, and Shiriaev
, A.
, 2004
, “Observer-Based Strict Positive Real (SPR) Switching Output Feedback Control
,” 43rd IEEE Conference on Decision and Control
, December 14–17, Atlantis, Paradise Island, Bahamas, 3
, pp. 2811
–2816
.9.
Barmish
, B. R.
, 1985
, “Necessary and Sufficient Conditions for Quadratic Stabilizability of an Uncertain System
,” J. Optim. Theory Appl.
, 46
(4
), pp. 399
–408
.10.1007/BF0093914510.
Chesi
, G.
, Garulli
, A.
, Tesi
, A.
, and Vicino
, A.
, 2003
, “Robust Stability of Polytopic Systems via Polynomially Parameter Dependent Lyapunov Functions
,” Proceeding of the 42nd IEEE Conference on Decision and Control
, December 9–12, Maui, HI, pp. 4670
–4675
.11.
Gahinet
, P.
, Apkarian
, P.
, and Chilali
, M.
, 1996
, “Affine Parameter Dependent Lyapunov Functions and Real Parametric Uncertainty
,” IEEE Trans. Autom. Control
, 41
(3
), pp. 436
–442
.10.1109/9.48664612.
Montagner
, V. F.
, and Peres
, P. L. D.
, 2003
, “A New LMI Condition for the Robust Stability of Linear Time-Varying Systems
,” Proceeding of the 42nd IEEE Conference on Decision and Control
, December 9–12, Maui, HI, 6
, pp. 6133
–6138
.13.
Montagner
, V. F.
, and Peres
, P. L. D.
, 2004
, “Robust Stability and
Performance of Linear Time-Varying Systems in Polytopic Domains
,” Int. J. Control
, 77
(15
), pp. 1343
–1352
.10.1080/0020717041233131932114.
Oliveira
, R. C. L. F.
, and Peres
, P. L. D.
, 2006
, “LMI Conditions for Robust Stability Analysis Based on Polynomially Parameter Dependent Lyapunov Functions
,” Syst. Control Lett.
, 55
, pp. 52
–61
.10.1016/j.sysconle.2005.05.00315.
Oliveira
, R. C. L. F.
, and Peres
, P. L. D.
, 2005
, “Stability of Polytopes of Matrices via Affine Parameter-Dependent Lyapunov Functions: Asymptotically Exact LMI Conditions
,” Linear Algebra Appl.
, 405
, pp. 209
–228
.10.1016/j.laa.2005.03.01916.
de Oliveira
, P. J.
, Oliveira
, R. C. L. F.
, Leite
, V. J. S.
, Montagner
, V.
, and Peres
, P. L. D.
, 2004
, “ Guaranteed Cost Computation by Means of Parameter-Dependent Lyapunov Functions
,” Automatica
, 40
, pp. 1053
–1061
.10.1016/j.automatica.2004.01.02517.
Ramos
, D. C. W.
, and Peres
, P. L. D.
, 2002
, “An LMI Condition for the Robust Stability of Uncertain Continuous-Time Linear Systems
,” IEEE Trans. Autom. Control
, 47
(4
), pp. 675
–678
.10.1109/9.99504818.
Boyd
, S.
, Ghaoui
, L. E.
, Feron
, E.
, and Balakrishnan
, V.
, 1994
, Linear Matrix Inequalities in System and Control Theory (SIAM Studies in Applied Mathematics)
, SIAM
, Philadelphia, PA
.19.
Veselý
, V.
, 2006
, “Robust Controller Design for Linear Polytopic Systems
,” Kybernetika
, 42
(1
), pp. 95
–110
. Available at http://www.kybernetika.cz/view_file.html?item=197420.
Lancaster
, P.
, and Rodman
, L.
, 1995
, Algebraic Riccati Equations
, Clarendon Press
, Oxford, UK
.21.
Gauthier
, J.
, and Kupka
, I.
, 2002
, Deterministic Observation: Theory and Applications
, Cambridge University Press
, Cambridge, UK
.22.
Gahinet
, P.
, Nemirovski
, A.
, Laub
, A. J.
, and Chilali
, M.
, 1995
, The LMI Control Toolbox for Use With Matlab
, The Math Works, Inc.
, Natick, MA
.23.
Khalil
, H. K.
, and Strangas
, E. G.
, 1996
, “Robust Speed Control of Induction Motors Using Position and Current Measurements
,” IEEE Trans. Autom. Control
, 41
, pp. 1216
–1219
.10.1109/9.53369024.
Tlili
, A. S.
, and Braiek
, N. B.
, 2006
, “On the Multimodel Approaches for State Observation of Induction Motors
,” Trans. Syst. Signals Devices
, 1
, pp. 141
–155
.25.
Tlili
, A. S.
, and Braiek
, N. B.
, 2002
, “Observateurs d’état Non Linéaires et LPV des Machines Asyncrone
,” Conférence Internationale Francophone d'Automatique, CIFA’02
, Nantes, France, July 8–10.Copyright © 2014 by ASME
You do not currently have access to this content.