This paper focuses on the automatic control of aircraft in the longitudinal plane, during landing, by using the linearized dynamics of aircraft, taking into consideration the wind shears and the errors of the sensors. A new robust automatic landing system (ALS) is obtained by means of the H-inf control, the dynamic inversion, an optimal observer, and two reference models providing the aircraft desired velocity and altitude. The theoretical results are validated by numerical simulations for a Boeing 747 landing; the simulation results are very good (Federal Aviation Administration (FAA) accuracy requirements for Category III are met) and show the robustness of the system even in the presence of wind shears and sensor errors. Moreover, the designed control law has the ability to reject the sensor measurement noises and wind shears with low intensity.

References

1.
McLean
,
D.
,
1990
,
Automatic Flight Control Systems
,
Prentice Hall
,
Englewood Cliffs, NJ
.
2.
Lungu
,
R.
,
Lungu
,
M.
, and
Grigorie
,
T. L.
,
2012
, “
ALSs With Conventional and Fuzzy Controllers Considering Wind Shears and Gyro Errors
,”
J. Aerosp. Eng.
,
26
(
4
), pp.
794
813
.
3.
Lungu
,
R.
,
Lungu
,
M.
, and
Grigorie
,
T. L.
,
2013
, “
Automatic Control of Aircraft in Longitudinal Plane During Landing
,”
IEEE Trans. Aerosp. Electron. Syst.
,
49
(
2
), pp.
1338
1350
.
4.
Juang
,
J. G.
, and
Cheng
,
K. C.
,
2006
, “
Application of Neural Network to Disturbances Encountered Landing Control
,”
IEEE Trans. Intell. Transp. Syst.
,
7
(
4
), pp.
582
588
.
5.
Che
,
J.
, and
Chen
,
D.
,
2001
, “
Automatic Landing Control Using H∞ Control and Stable Inversion
,”
40th Conference on Decision and Control
,
Orlando, FL
, pp.
241
246
.
6.
Li
,
Y.
,
Sundararajan
,
N.
,
Saratchandran
,
P.
, and
Wang
,
Z.
,
2004
, “
Robust Neuro-H∞ Controller Design for Aircraft Auto-Landing
,”
IEEE Trans. Aerosp. Electron. Syst.
,
40
(
1
), pp.
158
167
.
7.
Mori
,
R.
, and
Suzuki
,
S.
,
2009
, “
Neural Network Modeling of Lateral Pilot Landing Control
,”
J. Aircr.
,
46
(
5
), pp.
1721
1726
.
8.
Vo
,
H.
, and
Sridhar
,
S.
,
2008
, “
Robust Control of F-16 Lateral Dynamics
,”
Int. J. Aerosp. Mech. Eng.
,
2
(
2
), pp.
80
85
.
9.
Rao
,
D. M.
, and
Go
,
T. H.
,
2014
, “
Automatic Landing System Design Using Sliding Mode Control
,”
Aerosp. Sci. Technol.
,
32
, pp.
180
187
.
10.
Zdenko
,
K.
, and
Stjepan
,
B.
,
2006
,
Fuzzy Controller Design—Theory and Applications
,
Taylor and Francis
,
Boca Raton
.
11.
Kumar
,
V.
,
Rana
,
K. P.
, and
Gupta
,
V.
,
2008
, “
Real-Time Performance Evaluation of a Fuzzy PI + Fuzzy PD Controller for Liquid-Level Process
,”
Int. J. Intell. Control Syst.
,
13
(
2
), pp.
89
96
.
12.
Shue
,
S.
, and
Agarwal
,
R. K.
,
1999
, “
Design of Automatic Landing Systems Using Mixed H2/H∞ Control
,”
J. Guid. Control Dyn.
,
22
(
1
), pp.
103
114
.
13.
Ochi
,
Y.
, and
Kanai
,
K.
,
1999
, “
Automatic Approach and Landing for Propulsion Controlled Aircraft by H∞ Control
,” 1999
IEEE
International Conference on Control Applications
,
Kohala Coast
,
HI
, pp.
997
1002
.
14.
Afshari
,
H.
,
Roshanian
,
J.
, and
Novinzadeh
,
A.
,
2011
, “
Robust Nonlinear Optimal Solution to the Lunar Landing Guidance by Using Neighboring Optimal Control
,”
J. Aerosp. Eng.
,
24
(
1
), pp.
20
30
.
15.
Lungu
,
M.
,
2008
,
Sisteme de Conducere a Zborului (Flight Control Systems)
,
Sitech
,
Craiova, Romania
.
16.
Parkinson
,
B.
,
O'Connor
,
M.
, and
Fitzgibbon
,
K.
,
1996
, “
Aircraft Automatic Approach and Landing Using GPS
,”
Global Positioning System: Theory and Applications
, Vol.
II
, AIAA,
Cambridge
, UK, pp.
397
425
.
17.
Tudosie
,
A.
,
2008
, “
Jet Engine's Speed Controller With Constant Pressure Chamber
,”
International Conference on Automation and Information
ICAI'08
,
Bucharest
,
Romania
, pp.
229
234
.
18.
Braff
,
R.
,
Powell
,
J. D.
, and
Dorfler
,
J.
,
1996
, “
Applications of GPS to Air Traffic Control
,”
Global Positioning System: Theory and Applications
, Vol.
II
, AIAA,
Cambridge
, UK, pp.
327
374
.
You do not currently have access to this content.