This paper studies the inverse kinematics (IKs) of a space robot with a controlled-floating base. Different from the traditional space robot which has a free-floating base, the momentum conservation is no longer satisfied so that the degrees-of-freedom (DOFs) and redundancy of the robot obviously increase, and motion limits exist for both base and manipulator. To deal with such a problem, a gradient projection of weighted Jacobian matrix (GPWJM) method is proposed. The Jacobian matrix is derived considering the additional DOFs of the base, and the trajectory tracking by the end-effector is chosen as the main task. A clamping weighted least norm scheme is introduced into the derived Jacobian matrix to avoid the motion limits, and the singular-robustness is enhanced by the damping least-squares. The convergence and accuracy analysis indicates the calculation of damping factor; while the verification of motion limits avoidance indicates the inequality constraint of clamping velocity. Finally, the effectiveness of the proposed GPWJM method is investigated by the numerical simulation in which a planar 3DOF manipulator on a 3DOF base is taken as a demo.

References

1.
Agrawal
,
S. K.
,
Pathak
,
K.
,
Franch
,
J.
,
Lampariello
,
R.
, and
Hirzinger
,
G.
,
2009
, “
A Differentially Flat Open-Chain Space Robot With Arbitrarily Oriented Joint Axes and Two Momentum Wheels at the Base
,”
IEEE Trans. Autom. Control
,
54
(
9
), pp.
2185
2191
.
2.
Huang
,
P.
,
Wang
,
D.
,
Meng
,
Z.
, and
Guo
,
J.
,
2015
, “
Adaptive Postcapture Backstepping Control for Tumbling Tethered Space Robot–Target Combination
,”
J. Guid. Control Dyn.
,
39
(
1
), pp.
1
7
.
3.
Xu
,
W.
,
Zhang
,
J.
,
Liang
,
B.
, and
Li
,
B.
,
2016
, “
Singularity Analysis and Avoidance for Robot Manipulators With Non-Spherical Wrists
,”
IEEE Trans. Ind. Electron.
,
63
(
1
), pp.
277
290
.
4.
Xu
,
W.
,
Peng
,
J.
,
Liang
,
B.
, and
Mu
,
Z.
,
2016
, “
Hybrid Modeling and Analysis Method for Dynamic Coupling of Space Robots
,”
IEEE Trans. Aerosp. Electron. Syst.
,
52
(
1
), pp.
85
98
.
5.
Xu
,
W.
,
Yan
,
L.
,
Mu
,
Z.
, and
Wang
,
Z.
,
2015
, “
Dual Arm Angle Parameterization and Its Applications for Analytical Inverse Kinematics of Redundant Manipulators
,”
Robotica
,
34
(
12
), pp.
1
20
.
6.
Kemal Ozgoren
,
M.
,
2013
, “
Optimal Inverse Kinematic Solutions for Redundant Manipulators by Using Analytical Methods to Minimize Position and Velocity Measures
,”
ASME J. Mech. Rob.
,
5
(
3
), p.
031009
.
7.
Colomé
,
A.
, and
Torras
,
C.
,
2015
, “
Closed-Loop Inverse Kinematics for Redundant Robots: Comparative Assessment and Two Enhancements
,”
IEEE/ASME Trans. Mech.
,
20
(
2
), pp.
944
955
.
8.
Whitney
,
D. E.
,
1969
, “
Resolved Motion Rate Control of Manipulators and Human Prostheses
,”
IEEE Trans. Man-Mach. Syst.
,
10
(
2
), pp.
47
53
.
9.
Wolovich
,
W. A.
, and
Elliott
,
H.
,
1984
, “
A Computational Technique for Inverse Kinematics
,” 23rd
IEEE
Conference Decision Control
, Las Vegas, NV, Dec. 12–14, Vol.
23
, pp.
1359
1363
.
10.
Wampler
,
C. W.
,
1986
, “
Manipulator Inverse Kinematic Solutions Based on Vector Formulations and Damped Least Squares Methods
,”
IEEE Trans. Syst., Man, Cybern.
,
16
(
1
), pp.
93
101
.
11.
Nakamura
,
Y.
, and
Hanafusa
,
H.
,
1986
, “
Inverse Kinematics Solutions With Singularity Robustness for Robot Manipulator Control
,”
ASME J. Dyn. Syst. Meas. Control
,
108
(
3
), pp.
163
171
.
12.
Buss
,
S. R.
, and
Kim
,
J.-S.
,
2005
, “
Selectively Damped Least Squares for Inverse Kinematics
,”
J. Graphics Tools
,
10
(
3
), pp.
37
49
.
13.
Choi
,
Y.
,
2008
, “
Singularity-Robust Inverse Kinematics Using Lagrange Multiplier for Redundant Manipulators
,”
ASME J. Dyn. Syst., Meas. Control
,
130
(
5
), p.
051009
.
14.
Sciavicco
,
L.
, and
Siciliano
,
B.
,
1988
, “
A Solution Algorithm to the Inverse Kinematic Problem for Redundant Manipulators
,”
IEEE J. Rob. Autom.
,
4
(
4
), pp.
403
410
.
15.
Seraji
,
H.
,
1989
, “
Configuration Control of Redundant Manipulator: Theory and Implementation
,”
IEEE Trans. Rob. Autom.
,
5
(
4
), pp.
472
490
.
16.
Baillieul
,
J.
,
1985
, “
Kinematic Programming Alternatives for Redundant Manipulators
,”
IEEE
International Conference on Robotics and Automation
, Mar. 25–28, Vol.
2
, pp.
722
728
.
17.
Karpińska
,
J.
, and
Tchoń
,
K.
,
2012
, “
Performance-Oriented Design of Inverse Kinematics Algorithms: Extended Jacobian Approximation of the Jacobian Pseudo-Inverse
,”
ASME J. Mech. Rob.
,
4
(
2
), p.
021008
.
18.
Liëgeois
,
A.
,
1977
, “
Automatic Supervisory Control of the Configuration and Behavior of Multibody Mechanisms
,”
IEEE
Trans. Syst., Man, Cybern.,
7
(
12
), pp.
868
871
.
19.
Maciejewski
,
A. A.
, and
Klein
,
C. A.
,
1985
, “
Obstacle Avoidance for Kinematically Redundant Manipulators in Dynamically Varying Environments
,”
Intl. J. Rob. Res.
,
4
(
3
), pp.
109
117
.
20.
Hollerbach
,
J.
, and
Suh
,
K. C.
,
1987
, “
Redundancy Resolution of Manipulators Through Torque Optimization
,”
IEEE J. Rob. Autom.
,
3
(
4
), pp.
308
316
.
21.
Mansard
,
N.
,
Khatib
,
O.
, and
Kheddar
,
A.
,
2009
, “
A Unified Approach to Integrate Unilateral Constraints in the Stack of Tasks
,”
IEEE Trans. Rob.
,
25
(
3
), pp.
670
685
.
22.
Nakamura
,
Y.
,
Hanafusa
,
H.
, and
Yoshikawa
,
T.
,
1987
, “
Task-Priority Based Redundancy Control of Robot Manipulators
,”
Int. J. Rob. Res.
,
6
(
2
), pp.
3
15
.
23.
Chiaverini
,
S.
,
1997
, “
Singularity-Robust Task-Priority Redundancy Resolution for Real-Time Kinematic Control of Robot Manipulators
,”
IEEE Trans. Rob. Autom.
,
13
(
3
), pp.
398
410
.
24.
Flacco
,
F.
,
De Lucca
,
A.
, and
Khatib
,
O.
,
2012
, “
Prioritized Multi-Task Motion Control of Redundant Robots Under Hard Joint Constraints
,”
IEEE/RSJ
International Conference on International Robotic Systems
, Oct. 7–12, pp.
3970
3977
.
25.
Chan
,
T. F.
, and
Dubey
,
R. V.
,
1995
, “
A Weighted Least-Norm Solution Based Scheme for Avoiding Joint Limits for Redundant Joint Manipulators
,”
IEEE Trans. Rob. Autom.
,
11
(
2
), pp.
286
292
.
26.
Xiang
,
J.
,
Zhong
,
C.
, and
Wei
,
W.
,
2012
, “
A Varied Weights Method for the Kinematic Control of Redundant Manipulators With Multiple Constraints
,”
IEEE Trans. Rob.
,
28
(
2
), pp.
330
340
.
27.
Raunhardt
,
D.
, and
Boulic
,
R.
,
2007
, “
Progressive Clamping
,”
IEEE
International Conference on Robotics And Automation
, Apr. 10–14, pp.
4414
4419
.
28.
Huang
,
S.
,
Peng
,
Y.
,
Wei
,
W.
, and
Xiang
,
J.
,
2014
, “
Clamping Weighted Least-Norm Method for the Manipulator Kinematic Control: Avoiding Joint Limits
,”
33rd Chinese Control Conference
, July 28–30, pp.
8309
8314
.
29.
Xiang
,
J.
,
Zhong
,
C.
, and
Wei
,
W.
,
2010
, “
General-Weighted Least-Norm Control for Redundant Manipulators
,”
IEEE Trans. Rob.
,
26
(
4
), pp.
660
669
.
You do not currently have access to this content.