This paper compares the effectiveness of the proposed hybrid metaheuristic algorithms for a class of unstable systems with time delay to that of the existing ones. The local search and global methods of optimization are combined to yield more effective hybrid metaheuristic algorithms. These algorithms are used to tune the proportional–integral–derivative (PID) controllers, satisfying the robust stabilizing vector gain margin (VGM). Six global heuristic algorithms namely ant colony optimization (ACO), particle swarm optimization (PSO), biogeography-based optimization (BBO), population-based incremental learning (PBIL), evolution strategy (ES), and stud genetic algorithms (StudGA) are combined with the local search property of derivative free optimization methods such as simplex derivative based pattern search (SDPS) and implicit filtering (IMF) to yield hybrid metaheuristic algorithms. The efficacy of the proposed control schemes in terms of various time domain specifications and stabilizing VGM are compared with some existing methods for unstable process with time delay (UPTD) systems. The performance of the proposed control schemes particularly in the context of uncertainty in the plant is demonstrated using a case study. The efficacy of the proposed control scheme is illustrated with a nontransfer function based multibody vehicle autosteer control design problem.

References

1.
Åström
,
K. J.
, and
Hägglund
,
T.
,
2001
, “
The Future of PID Control
,”
Control Eng. Pract.
,
9
(
11
), pp.
1163
1175
.
2.
Ziegler
,
J. G.
, and
Nichols
,
N. B.
,
1942
, “
Optimum Settings for Automatic Controllers
,”
ASME Trans.
,
64
(1), pp.
759
768
.https://staff.guilan.ac.ir/staff/users/chaibakhsh/fckeditor_repo/file/documents/Optimum%20Settings%20for%20Automatic%20Controllers%20(Ziegler%20and%20Nichols,%201942).pdf
3.
Sree
,
R. P.
, and
Chidambaram
,
M.
,
2006
,
Control of Unstable Systems
,
Narosa
,
Daryaganj, India
.
4.
Kanthaswamy
,
G.
, and
Jerome
,
J.
,
2014
, “
Control of Dead-Time Systems Using Derivative Free Local Search Guided Population-Based Incremental Learning Algorithms
,”
Optim. Eng.
,
15
(2), pp. 331–354.
5.
Kelley
,
C. T.
,
1999
, “
Iterative Methods for Optimization
,”
Frontiers in Applied Mathematics
, Vol.
18
,
Society for Industrial and Applied Mathematics
,
Philadelphia, PA
.
6.
Luyben
,
W. L.
,
2001
, “
Effect of Derivative Algorithm and Tuning Selection on the PID Control of Dead–Time Processes
,”
Ind. Eng. Chem. Res.
,
40
(
16
), pp.
3605
3611
.
7.
Marquardt
,
D.
,
1963
, “
An Algorithm for Least-Squares Estimation of Nonlinear Parameters
,”
SIAM J. Appl. Math.
,
11
(
2
), pp.
431
441
.
8.
Kanthaswamy
,
G.
, and
Jerome
,
J.
,
2009
, “
Optimal PID Controller Tuning Using Gradient Based Approach for Processes With Time Delay
,”
Technol. J., PSG Coll. Technol.
,
5
(
3
), pp.
67
75
.http://www.psgtech.edu/journal/Vol111-Sep09.htm
9.
Hedar
,
A.
, and
Fukushima
,
M.
,
2002
, “
Hybrid Simulated Annealing and Direct Search Method for Nonlinear Unconstrained Global Optimization
,”
Optim. Methods Software
,
17
(
5
), pp.
891
912
.
10.
Kanthaswamy
,
G.
, and
Jerome
,
J.
,
2010
, “
Design of PID Controllers for Dead-Time Systems Using Simulated Annealing Algorithms
,”
Int. J. Autom. Control
,
4
(
4
), pp.
380
397
.
11.
Kanthaswamy
,
G.
, and
Jerome
,
J.
,
2011
, “
Control of Dead-Time Systems Using Derivative Free Particle Swarm Optimization
,”
Int. J. Bio-Inspired Comput.
,
3
(
2
), pp.
85
102
.
12.
Kanthaswamy
,
G.
, and
Jerome
,
J.
,
2011
, “
Control of Dead-Time Systems Using Hybrid Ant Colony Optimization
,”
Appl. Artif. Intell.
,
25
(7), pp.
609
634
.
13.
Ganapathy
,
K.
,
Kumar
,
C. A.
, and
Jerome
,
J.
,
2016
, “
Optimal Tuning of PID Controllers for Dead-Time Systems Using Stud Genetic Algorithms
,”
J. Vib. Control
,
22
(10), pp. 2503–2518.
14.
Kelley
,
C. T.
,
1999
, “
Detection and Remediation of Stagnation in the Nelder-Mead Algorithm Using a Sufficient Decrease Condition
,”
SIAM J. Optim.
,
10
(1), pp.
43
55
.
15.
Beyer
,
H. G.
, and
Schwefel
,
H. P.
,
2002
, “
Evolution Strategies: A Comprehensive Introduction
,”
Nat. Comput.
,
1
(
1
), pp.
3
52
.
16.
Begum
,
K. G.
,
Rao
,
A. S.
, and
Radhakrishnan
,
T. K.
,
2016
, “
Maximum Sensitivity Based Analytical Tuning Rules for PID Controllers for Unstable Dead Time Processes
,”
Chem. Eng. Res. Des.
,
109
, pp.
593
606
.
17.
Shamsuzzoha
,
M.
,
2014
, “
Robust PID Controller Design for Time Delay Processes With Peak of Maximum Sensitivity Criteria
,”
J. Cent. South Univ.
,
21
(
10
), pp.
3777
3786
.
18.
Chidambaram
,
M.
,
1998
,
Applied Process Control
,
Allied Publishers Ltd
.,
New Delhi, India
.
19.
Normey-Rico
,
J. E.
, and
Camacho
,
E. F.
,
2007
,
Control of Dead-Time Processes
,
Springer
,
Berlin
.
20.
Rios
,
L. M.
, and
Sahinidis
,
N. V.
,
2013
, “
Derivative-Free Optimization: A Review of Algorithms and Comparison of Software Implementations
,”
J. Global Optim.
,
56
(
3
), pp.
1247
1293
.
21.
Abramson
,
M. A.
,
Audet
,
C.
, and
Dennis
,
J. E.
, Jr.
,
2004
, “
Generalized Pattern Searches With Derivative Information
,”
Math. Reprogram.
,
100
(1), pp.
3
25
.
22.
Simon
,
D.
,
2008
, “
Biogeography-Based Optimization
,”
IEEE Trans. Evol. Comput.
,
12
(
6
), pp.
702
713
.
23.
Rarick
,
R.
,
Simon
,
D.
,
Villaseca
,
F. E.
, and
Vyakaranam
,
B.
,
2009
, “
Biogeography-Based Optimization and the Solution of the Power Flow Problem
,”
IEEE Conference on Systems, Man, and Cybernetics
(
ICSMC
), San Antonio, TX, Oct. 11–14, pp.
1029
1034
.
24.
Yuan
,
D.-L.
, and
Chen
,
Q.
,
2010
, “
Particle Swarm Optimisation Algorithm With Forgetting Character
,”
Int. J. Bio-Inspired Comput.
,
2
(
1
), pp.
59
64
.
25.
Costa
,
L.
, and
Oliveira
,
P.
, 2002,
Proceedings of the 2002 Congress on Evolutionary Computation
, Institute of Electrical and Electronics Engineers, Piscataway, NJ, pp. 97–102.
26.
Pourtakdoust
,
S. H.
, and
Nobahari
,
H.
,
2004
, “
An Extension of Ant Colony System to Continuous Optimization Problems
,”
ANTS—Fourth International Workshop on Ant Colony Optimization and Swarm Intelligence
, Brussels, Belgium, Sept. 7–9, pp.
294
301
.
27.
Custódio
,
A. L.
, and
Vicente
,
L. N.
,
2007
, “
Using Sampling and Simplex Derivatives in Pattern Search Methods
,”
SIAM J. Optim.
,
18
(
2
), pp.
537
555
.
28.
Grefenstette
,
J. J.
,
1992
, “
Genetic Algorithms for Changing Environments
,”
Second International Conference on Parallel Problem Solving From Nature
(
PPSN
), Brussels, Belgium, Sept. 28–30.http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.48.6501&rep=rep1&type=pdf
29.
Folly
,
K. A.
, and
Venayagamoorthy
,
G. K.
,
2009
, “
Effects of Learning Rate on the Performance of the Population Based Incremental Learning Algorithm
,”
International Joint Conference on Neural Networks
(
IJCNN
), Atlanta, GA, June 14–19, pp.
14
19
.
30.
Kookos
,
I. K.
, and
Syrcos
,
G.
,
2005
, “
PID Controller Tuning Using Mathematical Programming
,”
Chem. Eng. Process.
,
44
(
1
), pp.
41
49
.
31.
Franklin
,
G. F.
,
Powell
,
J. D.
, and
Emami-Naeini
,
A.
,
2006
,
Feedback Control of Dynamic Systems
, 5th ed.,
Pearson Education
,
Upper Saddle River, NJ
.
32.
Bröcker
,
M.
,
2006
, “
New Control Algorithms for Steering Feel Improvements of an Electric Powered Steering System With Belt Drive
,”
Veh. Syst. Dyn.
,
44
(
Suppl. 1
), pp.
759
769
.
33.
Huang
,
H. P.
, and
Chen
,
C. C.
,
1999
, “
Auto-Tuning of PID Controllers for Second Order Unstable Process Having Dead Time
,”
J. Chem. Eng. Jpn.
,
32
(
4
), pp.
486
497
.
34.
Tan
,
W.
,
Marquez
,
H. J.
, and
Chen
,
T.
,
2003
, “
IMC Design for Unstable Processes With Time Delays
,”
J. Process Control
,
13
(
3
), pp.
203
213
.
You do not currently have access to this content.