Owing to the hierarchical architecture of the derived model of the omni-direction autonomous ground vehicle (OD-AGV), the virtual desired trajectory (VDT) is first designed by the first switching surface, which is set as the linear dynamic pose error of the OD-AGV. In sequence, the trajectory tracking control (TTC) is designed by the second switching surface, which is the linear dynamic tracking error of the VDT. To deal with nonlinear time-varying uncertainties including system disturbance and different ground conditions, enhanced fuzzy second-order variable structure control (EF2VSC) is designed into both VDT and TTC. Finally, the experiments for tracking the circular trajectories with different curvatures, traveling velocities, and poses of the OD-AGV are presented to validate the effectiveness and robustness of the proposed hierarchical enhancement using fuzzy second-order variable structure control (HEF2VSC).

References

1.
Tsai
,
C. C.
,
Huang
,
H. C.
, and
Chan
,
C. K.
,
2011
, “
Parallel Elite Genetic Algorithm and Its Application to Global Path Planning for Autonomous Robot Navigation
,”
IEEE Trans. Ind. Electron
,
58
(
10
), pp.
4813
4823
.
2.
Jung
,
E. J.
,
Lee
,
J. H.
,
Yi
,
B. J.
,
Park
,
J.
,
Yuta
,
S.
, and
Noh
,
S. T.
,
2014
, “
Development of a Laser-Range-Finder-Based Human Tracking and Control Algorithm for a Marathoner Service Robot
,”
IEEE/ASME Trans. Mechatronics
,
19
(
6
), pp.
1963
1976
.
3.
Hwang
,
C. L.
,
2016
, “
Comparison of Path Tracking Control of a Car-Like Mobile Robot With and Without Motor Dynamics
,”
IEEE/ASME Trans. Mechatronics
,
21
(
4
), pp.
1801
1811
.
4.
Wang
,
R.
,
Hu
,
C.
,
Yan
,
F.
, and
Chadli
,
M.
,
2016
, “
Composite Nonlinear Feedback Control for Path Following of Four-Wheel Independently Actuated Autonomous Ground Vehicles
,”
IEEE Trans. Intell. Transp. Syst.
,
17
(
7
), pp.
2063
2074
.
5.
Kim
,
H. S.
, and
Song
,
J. B.
,
2014
, “
Multi-DOF Counter Balance Mechanism for a Service Robot Arm
,”
IEEE/ASME Trans. Mechatronics
,
19
(
6
), pp.
1756
1763
.
6.
Han
,
S. I.
, and
Lee
,
J. M.
,
2015
, “
Balancing and Velocity Control of a Unicycle Robot Based on the Dynamic Model
,”
IEEE Trans. Ind. Electron
,
62
(
1
), pp.
405
413
.
7.
Loureiro
,
R.
,
Benmoussa
,
S.
,
Touati
,
Y.
,
Merzouki
,
R.
, and
Bouamama
,
B. O.
,
2014
, “
Integration of Fault Diagnosis and Fault-Tolerant Control for Health Monitoring of a Class of MIMO Intelligent Autonomous Vehicles
,”
IEEE Trans. Veh. Technol.
,
63
(
1
), pp.
30
39
.
8.
Barreto S
,
J. C. L.
,
Conceic¸ão
,
A. G. S.
,
Dórea
,
C. E. T.
,
Martinez
,
L.
, and
de Pieri
,
E. R.
,
2014
, “
Design and Implementation of Model-Predictive Control With Friction Compensation on an Omnidirectional Mobile Robot
,”
IEEE/ASME Trans. Mechatronics
,
19
(
2
), pp.
467
476
.
9.
Tagne
,
G.
,
Talj
,
R.
, and
Charara
,
A.
,
2016
, “
Design and Comparison of Robust Nonlinear Controllers for the Lateral Dynamics of Intelligent Vehicles
,”
IEEE Trans. Intell. Transp. Syst.
,
17
(
3
), pp.
796
809
.
10.
Lian
,
C.
,
Xu
,
X.
,
Chen
,
H.
, and
He
,
H.
,
2016
, “
Near-Optimal Tracking Control of Mobile Robots Via Receding-Horizon Dual Heuristic Programming
,”
IEEE Trans. Cybern
,
46
(
11
), pp.
2484
2496
.
11.
Lin
,
F. J.
,
Chou
,
P. H.
,
Shieh
,
P. H.
, and
Chen
,
S. Y.
,
2009
, “
Adaptive Control of Two-Axis Motion Control System Using Interval Type-2 Fuzzy Neural Network
,”
IEEE Trans. Ind. Electron.
,
56
(
1
), pp.
178
193
.
12.
Kayacan
,
E.
,
Kayacan
,
E.
,
Ramon
,
H.
,
Kaynak
,
O.
, and
Saeys
,
W.
,
2015
, “
Towards Agrobots: Trajectory Control of an Autonomous Tractor Using Type-2 Fuzzy Logic Controllers
,”
IEEE/ASME Trans. Mechatronics
,
20
(
1
), pp.
287
297
.
13.
Sun
,
Z.
,
Zheng
,
J.
,
Man
,
Z.
, and
Wang
,
H.
,
2016
, “
Robust Control of a Vehicle Steer-by-Wire System Using Adaptive Sliding Mode
,”
IEEE Trans. Ind. Electron.
,
63
(
4
), pp.
2251
2262
.
14.
Li
,
Z.
,
Deng
,
J.
,
Lu
,
R.
,
Xu
,
Y.
,
Bai
,
J.
, and
Su
,
C. Y.
,
2016
, “
Trajectory-Tracking Control of Mobile Robot Systems Incorporating Neural-Dynamic Optimized Model Predictive Approach
,”
IEEE Trans. Syst. Man Cyber., Syst.
,
46
(
6
), pp.
740
749
.
15.
Hwang
,
C. L.
, and
Fung
,
W. L.
,
2016
, “
Global Fuzzy Adaptive Hierarchical Variable Structure Control for Trajectory Tracking of a Mobile Robot With Huge Uncertainties
,”
IEEE Trans. Fuzzy Syst.
,
24
(
3
), pp.
724
740
.
16.
Licea
,
D. B.
,
Ghogho
,
M.
,
McLernon
,
D.
, and
Zaidi
,
S. A. R.
,
2016
, “
Mobility Diversity-Assisted Wireless Communication for Mobile Robots
,”
IEEE Trans. Rob.
,
32
(
1
), pp.
214
229
.
17.
Suh
,
J.
,
You
,
S.
,
Choi
,
S.
, and
Oh
,
S.
,
2016
, “
Vision-Based Coordinated Localization for Mobile Sensor Networks
,”
IEEE Trans. Autom. Sci. Eng.
,
13
(
2
), pp.
611
620
.
18.
Taeed
,
F.
,
Salam
,
Z.
, and
Ayob
,
S. M.
,
2012
, “
FPGA Implementation of a Single-Input Fuzzy Logic Controller for Boost Converter With the Absence of an External Analog-to-Digital Converter
,”
IEEE Trans. Ind. Electron
,
59
(
2
), pp.
1208
1217
.
19.
Zaheer
,
S. A.
,
Choi
,
S. H.
,
Jung
,
C. Y.
, and
Kim
,
J. H.
,
2015
, “
A Modular Implementation Scheme for Nonsingleton Type-2 Fuzzy Logic Systems With Input Uncertainties
,”
IEEE/ASME Trans. Mechatronics
,
20
(
6
), pp.
3182
3192
.
20.
Masmoudi
,
M. S.
,
Krichen
,
N.
,
Masmoudi
,
M.
, and
Derbel
,
N.
,
2016
, “
Fuzzy Logic Controllers Design for Omnidirectional Mobile Robot Navigation
,”
Appl. Soft Comput.
,
49
(
6
), pp.
901
919
.
21.
Mendel
,
J.
,
Hagras
,
H.
,
Tan
,
W. W.
,
Melek
,
W. W.
, and
Ying
,
H.
,
2014
,
Introduction to Type-2 Fuzzy Logic Control: Theory and Applications
,
IEEE Press and Wiley
, Hoboken, NJ.
22.
Hwang
,
C. L.
,
Chiang
,
C. C.
, and
Yeh
,
Y. W.
,
2014
, “
Adaptive Fuzzy Hierarchical Sliding-Mode Control for the Trajectory Tracking of Uncertain Under-Actuated Nonlinear Dynamic Systems
,”
IEEE Trans. Fuzzy Syst.
,
22
(
2
), pp.
286
297
.
23.
Mohammadzadeh
,
A.
,
Kaynak
,
O.
, and
Teshnehlab
,
M.
,
2014
, “
Two-Mode Indirect Adaptive Control Approach for the Synchronization of Uncertain Chaotic Systems by the Use of a Hierarchical Interval Type-2 Fuzzy Neural Network
,”
IEEE Trans. Fuzzy Syst.
,
22
(
5
), pp.
1301
1312
.
24.
Chen
,
G.
, and
Zhang
,
W.
,
2016
, “
Hierarchical Coordinated Control Method for Unmanned Robot Applied to Automotive Test
,”
IEEE Trans. Ind. Electron
,
63
(
2
), pp.
1039
1051
.
25.
Zhang
,
X. X.
,
Li
,
H. X.
,
Wang
,
B.
, and
Ma
,
S.
,
2017
, “
A Hierarchical Intelligent Methodology for Spatiotemporal Control of Wafer Temperature in Rapid Thermal Processing
,”
IEEE Trans. Semicond. Manuf.
,
30
(
1
), pp.
52
59
.
26.
Hwang
,
C. L.
,
Yang
,
C. C.
, and
Hung
,
J. Y.
,
2018
, “
Path Tracking of an Autonomous Ground Vehicle With Different Payloads and Ground Conditions by Hierarchical Improved Fuzzy Dynamic Sliding-Mode Control
,”
IEEE Trans. Fuzzy Syst.
, epub.
You do not currently have access to this content.