The vehicle active suspension has drawn considerable attention due to its superiority in improving the vehicle dynamic performance. This paper investigates the nonfragile H control of delayed vehicle active suspension in a finite frequency range under nonstationary running. The control objective is to improve ride quality in a finite frequency band and ensure suspension constraints, and a quarter car model of the active suspension is established for a controller design. Then, the input delay, actuator uncertainty, and external disturbances are considered in the controller design. Moreover, a further generalization of the strict S-procedure is utilized to derive a sufficient condition in terms of linear matrix inequality (LMI) to capture performance in the concerned frequency range. Furthermore, a multi-objective controller is designed based on projection lemma in the framework of the solution of LMIs. A nonstationary road profile is established, and numerical simulations are also conducted to show the effectiveness and robustness of the proposed controller. Finally, experimental tests on a quarter-car test rig are implemented to examine the performance of the proposed controller for real applications.

References

1.
Zhao
,
J.
,
Wong
,
P. K.
,
Ma
,
X.
, and
Xie
,
Z.
,
2017
, “
Chassis Integrated Control for Active Suspension, Active Front Steering and Direct Yaw Moment Systems Using Hierarchical Strategy
,”
Veh. Syst. Dyn.
,
55
(
1
), pp.
72
103
.
2.
Tamboli
,
J. A.
, and
Joshi
,
S. G.
,
1999
, “
Optimum Design of a Passive Suspension System of a Vehicle Subjected to Actual Random Road Excitations
,”
J. Sound Vib.
,
219
(
2
), pp.
193
205
.
3.
Qin
,
Y.
,
Wei
,
C.
,
Tang
,
X.
,
Zhang
,
N.
,
Dong
,
M.
, and
Hu
,
C.
,
2018
, “
A Novel Nonlinear Road Profile Classification Approach for Controllable Suspension System: Simulation and Experimental Validation
,”
Mech. Syst. Signal Process.
(in press).
4.
Zhao
,
J.
,
Wong
,
P. K.
,
Ma
,
X.
, and
Xie
,
Z.
,
2018
, “
Design and Analysis of an Integrated SMC-TPWP Strategy for a Semi-Active Air Suspension With Stepper Motor-Driven GFASA
,”
Proc. Inst. Mech. Eng., Part I
,
23
(
9
), pp.
1194
1211
.
5.
Qin
,
Y.
,
Wang
,
Z.
,
Xiang
,
C.
,
Hashemi
,
E.
,
Khajepour
,
A.
, and
Huang
,
Y.
,
2019
, “
Speed Independent Road Classification Strategy Based on Vehicle Response: Theory and Experimental Validation
,”
Mech. Syst. Signal Process.
,
117
, pp.
653
666
.
6.
Tseng
,
H. E.
, and
Hrovat
,
D.
,
2015
, “
State of the Art Survey: Active and Semi-Active Suspension Control
,”
Veh. Syst. Dyn.
,
53
(
7
), pp.
1034
1062
.
7.
Shao
,
X.
,
Naghdy
,
F.
, and
Du
,
H.
,
2017
, “
Reliable Fuzzy H∞ Control for Active Suspension of In-Wheel Motor Driven Electric Vehicles With Dynamic Damping
,”
Mech. Syst. Signal Process.
,
87
, pp.
365
383
.
8.
Xiao
,
Z.
, and
Jing
,
X.
,
2015
, “
A SIMO Nonlinear System Approach to Analysis and Design of Vehicle Suspensions
,”
IEEE/ASME Trans. Mechatronics
,
20
(
6
), pp.
3098
3111
.
9.
Xiao
,
Z.
, and
Jing
,
X.
,
2016
, “
Frequency-Domain Analysis and Design of Linear Feedback of Nonlinear Systems and Applications in Vehicle Suspensions
,”
IEEE/ASME Trans. Mechatronics
,
21
(
1
), pp.
506
517
.
10.
Li
,
P. S.
,
Lam
,
J.
, and
Cheung
,
K. C.
,
2018
, “
Motion-Based Active Disturbance Rejection Control for a Non-Linear Full-Car Suspension System
,”
Mechatronics
,
232
(5), pp.
616
631
.
11.
Du
,
H.
,
Zhang
,
N.
, and
Lam
,
J.
,
2008
, “
Parameter-Dependent Input-Delayed Control of Uncertain Vehicle Suspensions
,”
J. Sound Vib.
,
317
(
3
), pp.
537
556
.
12.
Zhao
,
J.
,
Wong
,
P. K.
,
Xie
,
Z.
,
Ma
,
X.
, and
Hua
,
X.
,
2019
, “
Design and Control of an Automotive Variable Hydraulic Damper Using Cuckoo Search Optimized PID Method
,”
Int. J. Automot. Technol.
,
20
(
1
), pp.
51
63
.
13.
Zhao
,
J.
,
Wong
,
P. K.
,
Xie
,
Z. C.
,
Wei
,
C. Y.
, and
Zhao
,
R. C.
,
2016
, “
Design and Evaluation of a Ride Comfort Based Suspension System Using an Optimal Stiffness-Determination Method
,”
Trans. Can. Soc. Mech. Eng.
,
40
(
5
), pp.
773
785
.
14.
Ma
,
X.
,
Wong
,
P. K.
, and
Zhao
,
J.
,
2018
, “
Cornering Stability Control for Vehicles With Active Front Steering System Using T-S Fuzzy Based Sliding Mode Control Strategy
,”
Mech. Syst. Signal Process.
, (in press).
15.
Ning
,
D.
,
Sun
,
S.
,
Wei
,
L.
,
Zhang
,
B.
,
Du
,
H.
, and
Li
,
W.
,
2017
, “
Vibration Reduction of Seat Suspension Using Observer Based Terminal Sliding Mode Control With Acceleration Data Fusion
,”
Mechatronics
,
44
, pp.
71
83
.
16.
Ma
,
X.
,
Wong
,
P. K.
,
Zhao
,
J.
, and
Xie
,
Z. C.
,
2017
, “
Multi-Objective Sliding Mode Control on Vehicle Cornering Stability With Variable Gear Ratio Actuator-Based Active Front Steering Systems
,”
Sensors
,
17
(
12
), p.
49
.
17.
Elmadany
,
M. M.
, and
Abduljabbar
,
Z. S.
,
1999
, “
Linear Quadratic Gaussian Control of a Quarter-Car Suspension
,”
Veh. Syst. Dyn.
,
32
(
6
), pp.
479
497
.
18.
Al-Holou
,
N.
,
Lahdhiri
,
T.
,
Joo
,
D. S.
, and
Weaver
,
J.
,
2002
, “
Sliding Mode Neural Network Inference Fuzzy Logic Control for Active Suspension Systems
,”
IEEE Trans. Fuzzy Syst.
,
10
(
2
), pp.
234
246
.
19.
Ning
,
D.
,
Sun
,
S.
,
Zhang
,
F.
,
Du
,
H.
,
Li
,
W.
, and
Zhang
,
B.
,
2017
, “
Disturbance Observer Based Takagi-Sugeno Fuzzy Control for an Active Seat Suspension
,”
Mech. Syst. Signal Process.
,
93
, pp.
515
530
.
20.
Ma
,
X.
,
Wong
,
P. K.
, and
Zhao
,
J.
,
2019
, “
Practical Multi-Objective Control for Automotive Semi-Active Suspension System With Nonlinear Hydraulic Adjustable Damper
,”
Mech. Syst. Signal Process.
,
117
, pp.
667
688
.
21.
Zhao
,
J.
,
Wong
,
P. K.
,
Xie
,
Z. C.
, and
Ma
,
X. B.
,
2017
, “
Cuckoo Search-Based Intelligent Control of a Novel Variable Rotary Valve System for Engines Using PID Controller
,”
J. Intell. Fuzzy Syst.
,
32
(
3
), pp.
2351
2363
.
22.
Li
,
H.
,
Yu
,
J.
,
Hilton
,
C.
, and
Liu
,
H.
,
2013
, “
Adaptive Sliding-Mode Control for Nonlinear Active Suspension Vehicle Systems Using T–S Fuzzy Approach
,”
IEEE Trans. Ind. Electron.
,
60
(
8
), pp.
3328
3338
.
23.
Ma
,
X.
,
Wong
,
P. K.
, and
Zhao
,
J.
,
2018
, “
Adaptive Regulating of Automotive Mono-Tube Hydraulic Adjustable Dampers Using Grey Neural Network-Based Compensation System
,”
Proc. Inst. Mech. Eng., Part D
, (in press).
24.
Pan
,
H.
,
Li
,
H.
,
Sun
,
W.
, and
Wang
,
Z.
,
2018
, “
Adaptive Fault-Tolerant Compensation Control and Its Application to Nonlinear Suspension Systems
,”
IEEE Transactions on Systems, Man, and Cybernetics: Systems
, (in press).
25.
Li
,
P.
,
Lam
,
J.
, and
Cheung
,
K. C.
,
2014
, “
Multi-Objective Control for Active Vehicle Suspension With Wheelbase Preview
,”
J. Sound Vib.
,
333
(
21
), pp.
5269
5282
.
26.
Xie
,
Z.
,
Wong
,
P. K.
,
Zhao
,
J.
,
Xu
,
T.
,
Wong
,
K. I.
, and
Wong
,
H. C.
,
2013
, “
A Noise-Insensitive Semi-Active Air Suspension for Heavy-Duty Vehicles With an Integrated Fuzzy-Wheelbase Preview Control
,”
Math. Probl. Eng.
,
2013
, p.
121953
.
27.
Kong
,
Y.
,
Zhao
,
D.
,
Yang
,
B.
,
Han
,
C.
, and
Han
,
K.
,
2014
, “
Non-Fragile Multi-Objective Static Output Feedback Control of Vehicle Active Suspension With Time-Delay
,”
Veh. Syst. Dyn.
,
52
(
7
), pp.
948
968
.
28.
Ning
,
D.
,
Sun
,
S.
,
Du
,
H.
,
Li
,
W.
, and
Zhang
,
N.
,
2018
, “
Vibration Control of an Energy Regenerative Seat Suspension With Variable External Resistance
,”
Mech. Syst. Signal Process.
,
106
, pp.
94
113
.
29.
Li
,
P. S.
,
Lam
,
J.
,
Kwok
,
K. W.
, and
Lu
,
R.
,
2018
, “
Stability and Stabilization of Periodic Piecewise Linear Systems: A Matrix Polynomial Approach
,”
Automatica
,
94
, pp.
1
8
.
30.
Chen
,
H.
, and
Guo
,
K. H.
,
2005
, “
Constrained H∞ Control of Active Suspensions: An LMI Approach
,”
IEEE Trans. Control Syst. Technol.
,
13
(
3
), pp.
412
421
.
31.
Gao
,
H.
,
Lam
,
J.
, and
Wang
,
C.
,
2006
, “
Multi-Objective Control of Vehicle Active Suspension Systems Via Load-Dependent Controllers
,”
J. Sound Vib.
,
290
(
3–5
), pp.
654
675
.
32.
Cai
,
G. P.
,
Huang
,
J. Z.
, and
Yang
,
S. X.
,
2003
, “
An Optimal Control Method for Linear Systems With Time Delay
,”
Comput. Struct.
,
81
(
15
), pp.
1539
1546
.
33.
Chen
,
L. X.
,
Cai
,
G. P.
, and
Pan
,
J.
,
2009
, “
Experimental Study of Delayed Feedback Control for a Flexible Plate
,”
J. Sound Vib.
,
322
(
4
), pp.
629
651
.
34.
Du
,
H.
, and
Zhang
,
N.
,
2007
, “
H∞ Control of Active Vehicle Suspensions With Actuator Time Delay
,”
J. Sound Vib.
, (
1–2
), pp.
236
252
.
35.
Li
,
H.
,
Jing
,
X.
, and
Karimi
,
H. R.
,
2013
, “
Output-Feedback-Based H∞ Control for Vehicle Suspension Systems With Control Delay
,”
IEEE Trans. Ind. Electron.
,
61
(
1
), pp.
436
446
.
36.
Sakthivel
,
R.
,
Arunkumar
,
A.
,
Mathiyalagan
,
K.
, and
Selvi
,
S.
,
2015
, “
Robust Reliable Control for Uncertain Vehicle Suspension Systems With Input Delays
,”
ASME J. Dyn. Syst. Meas. Control
,
137
(
4
), p. 041013.
37.
Li
,
H.
,
Liu
,
H.
,
Hilton
,
C.
, and
Hand
,
S.
,
2013
, “
Non-Fragile H∞ Control for Half-Vehicle Active Suspension Systems With Actuator Uncertainties
,”
J. Vib. Control
,
19
(
4
), pp.
560
575
.
38.
Chen
,
Y.
,
Zhang
,
W.
, and
Gao
,
H.
,
2010
, “
Finite Frequency H∞ Control for Building Under Earthquake Excitation
,”
Mechatronics
,
20
(
1
), pp.
128
142
.
39.
Zhao
,
J.
,
Wang
,
Q.
,
Deng
,
X.
,
Choe
,
K.
,
Xie
,
F.
, and
Shuai
,
C.
,
2019
, “
A Modified Series Solution for Free Vibration Analyses of Moderately Thick Functionally Graded Porous (FGP) Deep Curved and Straight Beams
,”
Compos. Part B
,
165
, pp.
155
166
.
40.
Iwasaki
,
T.
, and
Hara
,
S.
,
2005
, “
Generalized KYP Lemma: Unified Frequency Domain Inequalities With Design Applications
,”
IEEE Trans. Autom. Control
,
50
(
1
), pp.
41
59
.
41.
Sun
,
W.
,
Gao
,
H.
, and
Kaynak
,
O.
,
2011
, “
Finite Frequency Control for Vehicle Active Suspension Systems
,”
IEEE Trans. Control Syst. Technol.
,
19
(
2
), pp.
416
422
.
42.
Wang
,
R.
,
Jing
,
H.
,
Karimi
,
H. R.
, and
Chen
,
N.
,
2015
, “
Robust Fault-Tolerant H∞ Control of Active Suspension Systems With Finite-Frequency Constraint
,”
Mech. Syst. Signal Process.
,
62–63
(
4702
), pp.
341
355
.
43.
Wang
,
G.
,
Chen
,
C.
, and
Yu
,
S.
,
2017
, “
Robust Non-Fragile Finite-Frequency H∞ Static Output-Feedback Control for Active Suspension Systems
,”
Mech. Syst. Signal Process.
,
91
, pp.
41
56
.
44.
Sun
,
W.
,
Zhao
,
Y.
,
Li
,
J.
,
Zhang
,
L.
, and
Gao
,
H.
,
2011
, “
Active Suspension Control With Frequency Band Constraints and Actuator Input Delay
,”
IEEE Trans. Ind. Electron.
,
59
(
1
), pp.
530
537
.
45.
Narayanan
,
S.
, and
Raju
,
G. V.
,
1992
, “
Active Control of Non-Stationary Response of Vehicles With Nonlinear Suspensions
,”
Veh. Syst. Dyn.
,
21
(
1
), pp.
73
87
.
46.
Guo
,
L. X.
, and
Zhang
,
L. P.
,
2012
, “
Robust H∞ Control of Active Vehicle Suspension Under Non-Stationary Running
,”
J. Sound Vib.
,
331
(
26
), pp.
5824
5837
.
47.
Palhares
,
R. M.
, and
Peres
,
P. L. D.
,
2000
, “
Robust Filtering With Guaranteed Energy-to-Peak Performance—An LMI Approach
,”
Automatica
,
36
(
6
), pp.
851
858
.
48.
Zhang
,
X. N.
, and
Yang
,
G. H.
,
2012
, “
Performance Analysis for Multi-Delay Systems in Finite Frequency Domains
,”
Int. J. Robust Nonlinear Control
,
22
(
8
), pp.
933
944
.
49.
Apkarian
,
P.
,
Tuan
,
H. D.
, and
Bernussou
,
J.
,
2001
, “
Continuous-Time Analysis, Eigenstructure Assignment, and H2 Synthesis With Enhanced Linear Matrix Inequalities (LMI) Characterizations
,”
IEEE Trans. Autom. Control
,
46
(
12
), pp.
1941
1946
.
50.
Wu
,
M.
,
He
,
Y.
,
She
,
J. H.
, and
Liu
,
G. P.
,
2004
, “
Technical Communique: Delay-Dependent Criteria for Robust Stability of Time-Varying Delay Systems
,”
Automatica
,
40
(
8
), pp.
1435
1439
.
You do not currently have access to this content.