Abstract

One of the pertinent problems in decision and control of dynamical systems is to identify the current operational regime of the physical process under consideration. To this end, there has been an upsurge in (data-driven) machine learning methods, such as symbolic time series analysis, hidden Markov modeling, and artificial neural networks, which often rely on some form of supervised learning based on preclassified data to construct the classifier. However, this approach may not be adequate for dynamical systems with a variety of operational regimes and possible anomalous/failure conditions. To address this issue, the technical brief proposes a methodology, built upon the concept of symbolic time series analysis, wherein the classifier learns to discover the patterns so that the algorithms can train themselves online while simultaneously functioning as a classifier. The efficacy of the methodology is demonstrated on time series of: (i) synthetic data from an unforced Van der Pol equation and (ii) pressure oscillation data from an experimental Rijke tube apparatus that emulates the thermoacoustics in real-life combustors where the process dynamics undergoes changes from the stable regime to an unstable regime and vice versa via transition to transient regimes. The underlying algorithms are capable of accurately learning and capturing the various regimes online in a (primarily) unsupervised manner.

References

1.
Bishop
,
C.
,
2006
,
Pattern Recognition and Machine Learning (Information Science and Statistics)
,
Springer-Verlag
,
Berlin
.
2.
Murphy
,
K.
,
2012
,
Machine Learning: A Probabilistic Perspective
,
The MIT Press
, Cambridge, MA.
3.
Bagnall
,
A.
,
Lines
,
J.
,
Bostrom
,
A.
,
Large
,
J.
, and
Keogh
,
E.
,
2017
, “
The Great Time Series Classification Bake Off: A Review and Experimental Evaluation of Recent Algorithmic Advances
,”
Data Min. Knowl. Discovery
,
31
(
3
), pp.
606
660
.10.1007/s10618-016-0483-9
4.
Sugimura
,
H.
, and
Matsumoto
,
K.
,
2011
, “
Classification System for Time Series Data Based on Feature Pattern Extraction
,”
IEEE
International Conference on Systems, Man, and Cybernetics
, Anchorage, AK, Oct. 9–12, pp.
1340
1345
.10.1109/ICSMC.2011.6083844
5.
Sarkar
,
S.
,
Chakravarthy
,
S.
,
Ramanan
,
V.
, and
Ray
,
A.
,
2016
, “
Dynamic Data-Driven Prediction of Instability in a Swirl-Stabilized Combustor
,”
Int. J. Spray Combust. Dyn.
,
8
(
4
), pp.
235
253
.10.1177/1756827716642091
6.
Ghalyan
,
N.
, and
Ray
,
A.
,
2020
, “
Symbolic Time Series Analysis for Anomaly Detection in Measure-Invariant Ergodic Systems
,”
ASME J. Dyn. Syst. Meas. Control
,
142
(
6
), p.
061003
.10.1115/1.4046156
7.
Jha
,
D.
,
Virani
,
N.
,
Reimann
,
J.
,
Srivastav
,
A.
, and
Ray
,
A.
,
2018
, “
Symbolic Analysis-Based Reduced Order Markov Modeling of Time Series Data
,”
Signal Process.
,
149
, pp.
68
81
.10.1016/j.sigpro.2018.03.004
8.
Li
,
Y.
,
Jha
,
D. K.
,
Ray
,
A.
, and
Wettergren
,
T. A.
,
2018
, “
Information-Theoretic Performance Analysis of Sensor Networks Via Markov Modeling of Time Series Data
,”
IEEE Trans. Cybern.
,
48
(
6
), pp.
1898
1909
.10.1109/TCYB.2017.2717974
9.
Wang
,
Z.
,
Yan
,
W.
, and
Oates
,
T.
,
2017
, “
Time Series Classification From Scratch With Deep Neural Networks: A Strong Baseline
,”
International Joint Conference on Neural Networks
(
IJCNN
), Anchorage, AK, May 14–19, pp.
1578
1585
.10.1109/IJCNN.2017.7966039
10.
Husken
,
M.
, and
Stagge
,
P.
,
2003
, “
Recurrent Neural Networks for Time Series Classification
,”
Neurocomputing
,
50
, pp.
223
235
.10.1016/S0925-2312(01)00706-8
11.
Mondal
,
S.
,
Ghalyan
,
N.
,
Ray
,
A.
, and
Mukhopadhyay
,
A.
,
2019
, “
Early Detection of Thermoacoustic Instabilities Using Hidden Markov Models
,”
Combust. Sci. Technol.
,
191
(
8
), pp.
1309
1328
.10.1080/00102202.2018.1523900
12.
Lim
,
C.
, and
Harrison
,
R.
,
2003
, “
Online Pattern Classification With Multiple Neural Network Systems: An Experimental Study
,”
IEEE
Trans. Syst., Man, Cybern., Part C,
33
(
2
), pp.
235
247
.10.1109/TSMCC.2003.813150
13.
Huang
,
X.
,
Ye
,
Y.
,
Xiong
,
L.
,
Lau
,
R.
,
Jiang
,
N.
, and
Wang
,
S.
,
2016
, “
Time Series k-Means: A New k-Means Type Smooth Subspace Clustering for Time Series Data
,”
Inf. Sci.
,
367–368
, pp.
1
13
.10.1016/j.ins.2016.05.040
14.
Rijke
,
P. L.
,
1859
, “
Notiz Über Eine Neue Art, Die in Einer an Beiden Enden Offenen Röhre Enthaltene Luft in Schwingungen zu Versetzen
,”
Ann. Phys.
,
183
(
6
), pp.
339
343
.10.1002/andp.18591830616
15.
Matveev
,
K.
,
2003
, “
Thermoacoustic Instabilities in the Rijke Tube: Experiments and Modeling
,” Ph.D. thesis,
California Institute of Technology
, Pasadena, CA.
16.
Ray
,
A.
,
2004
, “
Symbolic Dynamic Analysis of Complex Systems for Anomaly Detection
,”
Signal Process.
,
84
(
7
), pp.
1115
1130
.10.1016/j.sigpro.2004.03.011
17.
Gupta
,
S.
, and
Ray
,
A.
,
2007
, “
Symbolic Dynamics Filtering for Data-Driven Pattern Recognition
,”
Pattern Recognition: Theory and Application
, Nova Science Publishers, Hauppage, NY, pp.
17
71
.
18.
Mukherjee
,
K.
, and
Ray
,
A.
,
2014
, “
State Splitting and Merging in Probabilistic Finite State Automata for Signal Representation and Analysis
,”
Signal Process.
,
104
, pp.
105
119
.10.1016/j.sigpro.2014.03.045
19.
Rajagopalan
,
V.
, and
Ray
,
A.
,
2006
, “
Symbolic Time Series Analysis Via Wavelet-Based Partitioning
,”
Signal Process.
,
86
(
11
), pp.
3309
3320
.10.1016/j.sigpro.2006.01.014
20.
Subbu
,
A.
, and
Ray
,
A.
,
2008
, “
Space Partitioning Via Hilbert Transform for Symbolic Time Series Analysis
,”
Appl. Phys. Lett.
,
92
(
8
), p.
084107
.10.1063/1.2883958
21.
Sarkar
,
S.
,
Chattopdhyay
,
P.
, and
Ray
,
A.
,
2016
, “
Symbolization of Dynamic Data-Driven Systems for Signal Representation
,”
Signal, Image Video Process.
,
10
(
8
), pp.
1535
1542
.10.1007/s11760-016-0967-5
22.
Cartwbight
,
M. L.
,
1960
, “
Balthazar Van Der Pol
,”
J. London Math. Soc.
,
s1-35
(
3
), pp.
367
376
.10.1112/jlms/s1-35.3.367
23.
Bhattacharya
,
C.
,
Mondal
,
S.
,
Ray
,
A.
, and
Mukhopadhyay
,
A.
,
2020
, “
Reduced-Order Modeling of Thermoacoustic Instabilities in a Two-Heater Rijke Tube
,”
Combust. Theory and Model.
, 23(3), pp.
530
548
.10.1080/13647830.2020.1714080
24.
Gotoda
,
H.
,
Amano
,
M.
,
Miyano
,
T.
,
Ikawa
,
T.
,
Maki
,
K.
, and
Tachibana
,
S.
,
2012
, “
Characterization of Complexities in Combustion Instability in a Lean Premixed Gas-Turbine Model Combustor
,”
Chaos
,
22
(
4
), p.
043128
.10.1063/1.4766589
25.
Nair
,
V.
, and
Sujith
,
R.
,
2014
, “
Multifractality in Combustion Noise: Predicting an Impending Combustion Instability
,”
J. Fluid Mech.
,
747
, pp.
635
655
.10.1017/jfm.2014.171
You do not currently have access to this content.