Abstract

Wind power intermittency represents one of the major challenges facing the future growth of grid-connected wind energy projects. The integration of wind turbines and energy storage systems (ESS) provides a viable approach to mitigate the unfavorable impact on grid stability and power quality. In this study, an economic model predictive control (MPC) framework is presented for an integrated wind turbine and flywheel energy storage system (FESS). The control objective is to smooth wind power output and mitigate tower fatigue load. The optimal control problem within the model predictive control framework has been formulated as a convex optimal control problem with linear dynamics and convex constraints that can be solved globally. The performance of the proposed control algorithm is compared to that of a baseline wind turbine controller. The effect of the proposed control actions on the fatigue loads acting on the tower and blades is investigated. The simulation results, with various wind scenarios, showed the ability of the proposed control algorithm to achieve the aforementioned objectives in terms of smoothing output power and mitigating tower fatigue load with negligible effect on the wind energy harvested.

References

1.
REN21
,
2017
,
Renewables 2017 Global Status Report
,
REN21 Secretariat
,
Paris
.
2.
Albadi
,
M. H.
, and
El-Saadany
,
E. F.
,
2010
, “
Overview of Wind Power Intermittency Impacts on Power Systems
,”
Electr. Power Syst. Res.
,
80
(
6
), pp.
627
632
.10.1016/j.epsr.2009.10.035
3.
Díaz-González
,
F.
,
Sumper
,
A.
,
Gomis-Bellmunt
,
O.
, and
Villafáfila-Robles
,
R.
,
2012
, “
A Review of Energy Storage Technologies for Wind Power Applications
,”
Renew. Sustain. Energy Rev.
,
16
(
4
), pp.
2154
2171
.10.1016/j.rser.2012.01.029
4.
Jabir
,
M.
,
Azil Illias
,
H.
,
Raza
,
S.
, and
Mokhlis
,
H.
,
2017
, “
Intermittent Smoothing Approaches for Wind Power Output: A Review
,”
Energies
,
10
(
10
), p.
1572
.10.3390/en10101572
5.
Barton
,
J. P.
, and
Infield
,
D. G.
,
2004
, “
Energy Storage and Its Use With Intermittent Renewable Energy
,”
IEEE Trans. Energy Convers.
,
19
(
2
), pp.
441
448
.10.1109/TEC.2003.822305
6.
Hadjipaschalis
,
I.
,
Poullikkas
,
A.
, and
Efthimiou
,
V.
,
2009
, “
Overview of Current and Future Energy Storage Technologies for Electric Power Applications
,”
Renew. Sustain. Energy Rev.
,
13
(
6–7
), pp.
1513
1522
.10.1016/j.rser.2008.09.028
7.
Díaz-González
,
F.
,
Sumper
,
A.
,
Gomis-Bellmunt
,
O.
, and
Bianchi
,
F. D.
,
2013
, “
Energy Management of Flywheel-Based Energy Storage Device for Wind Power Smoothing
,”
Appl. Energy
,
110
, pp.
207
219
.10.1016/j.apenergy.2013.04.029
8.
Sebastián
,
R.
, and
Peña Alzola
,
R.
,
2012
, “
Flywheel Energy Storage Systems: Review and Simulation for an Isolated Wind Power System
,”
Renew. Sustain. Energy Rev.
,
16
(
9
), pp.
6803
6813
.10.1016/j.rser.2012.08.008
9.
Arani
,
A. A. K.
,
Karami
,
H.
,
Gharehpetian
,
G. B.
, and
Hejazi
,
M. S. A.
,
2017
, “
Review of Flywheel Energy Storage Systems Structures and Applications in Power Systems and Microgrids
,”
Renew. Sustain. Energy Rev.
,
69
, pp.
9
18
.10.1016/j.rser.2016.11.166
10.
Kirk
,
J. A.
,
1977
, “
Flywheel Energy Storage—I: Basic Concepts
,”
Int. J. Mech. Sci.
,
19
(
4
), pp.
223
231
.10.1016/0020-7403(77)90064-9
11.
Kirk
,
J. A.
, and
Studer
,
P. A.
,
1977
, “
Flywheel Energy Storage—II: Magnetically Suspended Superflywheel
,”
Int. J. Mech. Sci.
,
19
(
4
), pp.
233
245
.10.1016/0020-7403(77)90065-0
12.
Metwalli
,
S. M.
,
Shawki
,
G. S. A.
, and
Sharobeam
,
M. H.
,
1983
, “
Optimum Design of Variable-Material Flywheels
,”
J. Mech. Transm. Autom. Des.
,
105
(
2
), pp.
249
253
.10.1115/1.3258517
13.
Arvin
,
A. C.
, and
Bakis
,
C. E.
,
2006
, “
Optimal Design of Press-Fitted Filament Wound Composite Flywheel Rotors
,”
Compos. Struct.
,
72
(
1
), pp.
47
57
.10.1016/j.compstruct.2004.10.012
14.
Strasik
,
M.
,
Hull
,
J. R.
,
Mittleider
,
J. A.
,
Gonder
,
J. F.
,
Johnson
,
P. E.
,
McCrary
,
K. E.
, and
McIver
,
C. R.
,
2010
, “
An Overview of Boeing Flywheel Energy Storage Systems With High-Temperature Superconducting Bearings
,”
Supercond. Sci. Technol.
,
23
(
3
), p.
034021
.10.1088/0953-2048/23/3/034021
15.
Mousavi G
,
S. M.
,
Faraji
,
F.
,
Majazi
,
A.
, and
Al-Haddad
,
K.
,
2017
, “
A Comprehensive Review of Flywheel Energy Storage System Technology
,”
Renew. Sustain. Energy Rev.
,
67
, pp.
477
490
.10.1016/j.rser.2016.09.060
16.
Luo
,
Y.
,
Shi
,
L.
, and
Tu
,
G.
,
2014
, “
Optimal Sizing and Control Strategy of Isolated Grid With Wind Power and Energy Storage System
,”
Energy Convers. Manag.
,
80
, pp.
407
415
.10.1016/j.enconman.2014.01.061
17.
Harsha
,
P.
, and
Dahleh
,
M.
,
2015
, “
Optimal Management and Sizing of Energy Storage Under Dynamic Pricing for the Efficient Integration of Renewable Energy
,”
IEEE Trans. Power Syst.
,
30
(
3
), pp.
1164
1181
.10.1109/TPWRS.2014.2344859
18.
Ma
,
Z.
,
Shaltout
,
M. L.
, and
Chen
,
D.
,
2017
, “
Optimal Power Dispatch and Control of an Integrated Wind Turbine and Battery System
,”
ASME J. Dyn. Syst., Meas., Control
,
139
(
9
), p.
091008
.10.1115/1.4036074
19.
Khalid
,
M.
, and
Savkin
,
A. V.
,
2010
, “
A Model Predictive Control Approach to the Problem of Wind Power Smoothing With Controlled Battery Storage
,”
Renew. Energy
,
35
(
7
), pp.
1520
1526
.10.1016/j.renene.2009.11.030
20.
Hovgaard
,
T. G.
,
Boyd
,
S.
, and
Jørgensen
,
J. B.
,
2015
, “
Model Predictive Control for Wind Power Gradients
,”
Wind Energy
,
18
(
6
), pp.
991
1006
.10.1002/we.1742
21.
Venzke
,
A.
,
Fortenbacher
,
P.
, and
Andersson
,
G.
,
2016
, “
Optimal Control of Wind Power Systems With Energy Storage
,”
Energy Conference
(
ENERGYCON
), IEEE International, Leuven, Belgium, Apr. 4–8, pp.
1
6
.10.1109/ENERGYCON.2016.7514040
22.
Harris
,
M.
,
Hand
,
M.
, and
Wright
,
A.
,
2005
, Lidar for Turbine Control,
National Renewable Energy Laboratory
,
Golden, CO, Technical Report No. NREL/TP-500-39154.
https://www.wired.com/images_blogs/wiredscience/2010/03/lidar-for-turbines-nrel-2005.pdf
23.
Schlipf
,
D.
,
Schlipf
,
D. J.
, and
Kühn
,
M.
,
2013
, “
Nonlinear Model Predictive Control of Wind Turbines Using LIDAR
,”
Wind Energy
,
16
(
7
), pp.
1107
1129
.10.1002/we.1533
24.
Schlipf
,
D.
,
Grau
,
P.
,
Raach
,
S.
, and
Duraiski
,
R.
,
2014
, “
Comparison of Linear and Nonlinear Model Predictive Control of Wind Turbines Using LIDAR
,”
Proceedings of the American Control Conference
, Portland, OR, June 4–6, pp.
3742
3747
.10.1109/ACC.2014.6859205
25.
García
,
C. E.
,
Prett
,
D. M.
, and
Morari
,
M.
,
1989
, “
Model Predictive Control: Theory and Practice-A Survey
,”
Automatica
,
25
(
3
), pp.
335
348
.10.1016/0005-1098(89)90002-2
26.
Rawlings
,
J. B.
,
2000
, “
Tutorial Overview of Model Predictive Control
,”
IEEE Control Syst. Mag.
,
20
(
3
), pp.
38
52
.10.1109/37.845037
27.
Rawlings
,
J. B.
,
Angeli
,
D.
, and
Bates
,
C. N.
,
2012
, “
Fundamentals of Economic Model Predictive Control
,”
Proceedings of 51st IEEE Conference on Decision and Control
(
CDC
), Maui, HI, Dec. 10–13, pp.
3851
3861
.10.1109/CDC.2012.6425822
28.
Grüne
,
L.
,
2013
, “
Economic Receding Horizon Control Without Terminal Constraints
,”
Automatica
,
49
(
3
), pp.
725
734
.10.1016/j.automatica.2012.12.003
29.
Angeli
,
D.
,
Amrit
,
R.
, and
Rawlings
,
J. B.
,
2012
, “
On Average Performance and Stability of Economic Model Predictive Control
,”
IEEE Trans. Automat. Control
,
57
(
7
), pp.
1615
1626
.10.1109/TAC.2011.2179349
30.
Hovgaard
,
T. G.
,
Larsen
,
L. F. S.
,
Jørgensen
,
J. B.
, and
Boyd
,
S.
,
2013
, “
MPC for Wind Power Gradients—Utilizing Forecasts, Rotor Inertia, and Central Energy Storage
,”
European Control Conference
, Zurich, Switzerland, July 17–19, pp.
4071
4076
.10.23919/ECC.2013.6669830
31.
Shaltout
,
M. L.
,
Ma
,
Z.
, and
Chen
,
D.
,
2016
, “
An Economic Model Predictive Control Approach Using Convex Optimization for Wind Turbines
,”
Proceedings of the American Control Conference
, Boston, MA, July 6–8, pp.
3176
3181
.10.1109/ACC.2016.7525406
32.
Shaltout
,
M. L.
,
Ma
,
Z.
, and
Chen
,
D.
,
2018
, “
An Adaptive Economic Model Predictive Control Approach for Wind Turbines
,”
ASME J. Dyn. Syst., Meas., Control
,
140
(
5
), pp.
051007
051010
.10.1115/1.4038490
33.
Alhneaish
,
M. M.
,
Shaltout
,
M. L.
, and
Metwalli
,
S. M.
,
2018
, “
An Economic Model Predictive Control Approach for Wind Power Smoothing and Tower Load Mitigation
,”
ASME
Paper No. DSCC2018-9032.10.1115/DSCC2018-9032
34.
Jonkman
,
J.
,
Butterfield
,
S.
,
Musial
,
W.
, and
Scott
,
G.
,
2009
,
Definition of a 5-MW Reference Wind Turbine for Offshore System Development
,
National Renewable Energy Laboratory
,
Golden, CO
, Report No. NREL/TP-500-38060.
35.
Muljadi
,
E.
, and
Gevorgian
,
V.
,
2017
, “
Flywheel Energy Storage—Dynamic Modeling
,”
2017 Ninth Annual IEEE Green Technologies Conference
(
GreenTech
), Denver, CO, Mar. 29–31, pp.
312
319
.10.1109/GreenTech.2017.52
36.
Grunnet
,
J.
,
Soltani
,
M.
, and
Knudsen
,
T.
,
2010
, “
Aeolus Toolbox for Dynamics Wind Farm Model, Simulation and Control
,”
Proceedings of the European Wind Energy Conference and Exhibition
, EWEC, Warszawa, Poland, Apr. 20–23, pp.
3119
3129
.https://pdfs.semanticscholar.org/8478/408c97194ab7f1fe52a615f7c0ad7b051f75.pdf
37.
Gasch
,
R.
, and
Twele
,
J.
,
2011
,
Wind Power Plants: Fundamentals, Design, Construction and Operation
,
Springer Science and Business Media
, Berlin.
38.
Jonkman
,
J. M.
, and
Buhl
,
M. L.
, Jr.
,
2005
,
FAST User's Guide
,
National Renewable Energy Laboratory
,
Golden, CO, Report No. NREL/EL-500-38230
.
39.
Xu
,
J.
,
Han
,
Z.
,
Yan
,
X.
, and
Song
,
W.
,
2019
, “
Design Optimization of a Multi-Megawatt Wind Turbine Blade With the NPU-MWA Airfoil Family
,”
Energies
,
12
(
17
), p.
3330
.10.3390/en12173330
40.
Wang
,
Y.
, and
Boyd
,
S.
,
2010
, “
Fast Model Predictive Control Using Online Optimization
,”
Control Syst. Technol. IEEE Transm.
,
18
(
2
), pp.
267
278
.10.1109/TCST.2009.2017934
41.
Schlipf
,
D.
,
Fleming
,
P.
,
Kapp
,
S.
,
Scholbrock
,
A.
,
Haizmann
,
F.
,
Belen
,
F.
, and
Wright
,
A.
,
2013
, “
Direct Speed Control Using LIDAR and Turbine Data
,”
American Control Conference
, Washington, DC, June 17–19, pp.
2208
2213
.10.1109/ACC.2013.6580163
42.
Wang
,
N.
,
Johnson
,
K. E.
, and
Wright
,
A. D.
,
2013
, “
Comparison of Strategies for Enhancing Energy Capture and Reducing Loads Using LIDAR and Feedforward Control
,”
IEEE Trans. Control Syst. Technol.
,
21
(
4
), pp.
1129
1142
.10.1109/TCST.2013.2258670
43.
Grant
,
M. C.
, and
Boyd
,
S. P.
,
2013
, “
CVX: Matlab Software for Disciplined Convex Programming, Version 2.0 Beta
,” CVX Research, accessed Feb. 17, 2020, http://cvxr.com/cvx
44.
Wang
,
N.
,
Johnson
,
K. E.
, and
Wright
,
A. D.
,
2012
, “
FX-RLS-Based Feedforward Control for LIDAR-Enabled Wind Turbine Load Mitigation
,”
IEEE Trans. Control Syst. Technol.
,
20
(
5
), pp.
1212
1222
.10.1109/TCST.2011.2163515
45.
Hayman
,
G. J.
, and
Buhl
, M.
, Jr.
,
2012
,
MLife User's Guide
,
National Renewable Energy Laboratory
,
Golden, CO
.
46.
Jonkman
,
B. J.
,
2009
,
TurbSim User's Guide
,
National Renewable Energy Laboratory
,
Washington, DC, Technical Report No. NREL/TP-500-46198
.
47.
Bossanyi
,
E. A.
,
2003
, “
Individual Blade Pitch Control for Load Reduction
,”
Wind Energy
,
6
(
2
), pp.
119
128
.10.1002/we.76
You do not currently have access to this content.