Abstract

This paper proposes an adaptive higher-order sliding mode (AHOSM) control method based on the adaptive fuzzy logic system for steer-by-wire (SbW) system to achieve the tracking control of the front wheels steering angle. First, an adaptive fuzzy logic system is adopted to estimate the unknown dynamics of the SbW system. Then, the AHOSM control is constructed to overcome the lumped uncertainties including unknown external perturbation and fuzzy logic system approximation error and has the advantage of attenuating the chattering caused by the discontinuous control signal. Finally, the adaptation scheme is designed for the dynamic gain of the proposed AHOSM controller without a priori knowledge of the bounds of the uncertainties. In contrast to the existing controllers applied in the SbW system, this controller has a better control performance in practical application. By means of Lyapunov stability analysis, it is theoretically proved that the system trajectory converges to an adjustable neighborhood of the origin in finite time. Simulations and vehicle experiments are carried out to verify the effectiveness of the proposed approach.

References

1.
Balachandran
,
A.
, and
Gerdes
,
J. C.
,
2015
, “
Designing Steering Feel for Steer-by-Wire Vehicles Using Objective Measures
,”
IEEE/ASME Trans. Mechatronics
,
20
(
1
), pp.
373
383
.10.1109/TMECH.2014.2324593
2.
Gadda
,
C. D.
,
Laws
,
S. M.
, and
Gerdes
,
J. C.
,
2007
, “
Generating Diagnostic Residuals for Steer-by-Wire Vehicles
,”
IEEE Trans. Control Syst. Technol.
,
15
(
3
), pp.
529
540
.10.1109/TCST.2007.894650
3.
Hoseinnezhad
,
R.
, and
Bab-Hadiashar
,
A.
,
2005
, “
Missing Data Compensation for Safety-Critical Components in a Drive-by-Wire System
,”
IEEE Trans. Veh. Technol.
,
54
(
4
), pp.
1304
1311
.10.1109/TVT.2005.851331
4.
Wang
,
H.
,
Kong
,
H.
,
Man
,
Z.
,
Tuan
,
D. M.
,
Cao
,
Z.
, and
Shen
,
W.
,
2014
, “
Sliding Mode Control for Steer-by-Wire Systems With ac Motors in Road Vehicles
,”
IEEE Trans. Ind. Electron.
,
61
(
3
), pp.
1596
1611
.10.1109/TIE.2013.2258296
5.
Yih
,
P.
, and
Gerdes
,
J. C.
,
2005
, “
Modification of Vehicle Handling Characteristics Via Steer-by-Wire
,”
IEEE Trans. Control Syst. Technol.
,
13
(
6
), pp.
965
976
.10.1109/TCST.2005.854320
6.
Yamaguchi
,
Y.
, and
Murakami
,
T.
,
2009
, “
Adaptive Control for Virtual Steering Characteristics on Electric Vehicle Using Steer-by-Wire System
,”
IEEE Trans. Ind. Electron.
,
56
(
5
), pp.
1585
1594
.10.1109/TIE.2008.2010171
7.
Do
,
M. T.
,
Man
,
Z.
,
Zhang
,
C.
,
Wang
,
H.
, and
Tay
,
F. S.
,
2014
, “
Robust Sliding Mode-Based Learning Control for Steer-by-Wire Systems in Modern Vehicles
,”
IEEE Trans. Veh. Technol.
,
63
(
2
), pp.
580
590
.10.1109/TVT.2013.2280459
8.
Cetin
,
A. E.
,
Adli
,
M. A.
,
Barkana
,
D. E.
, and
Kucuk
,
H.
,
2010
, “
Implementation and Development of an Adaptive Steering-Control System
,”
IEEE Trans. Veh. Technol.
,
59
(
1
), pp.
75
83
.10.1109/TVT.2009.2033074
9.
Huang
,
X.
,
Zhang
,
H.
,
Zhang
,
G.
, and
Wang
,
J.
,
2014
, “
Robust Weighted Gain-Scheduling h Vehicle Lateral Motion Control With Considerations of Steering System Backlash-Type Hysteresis
,”
IEEE Trans. Control Syst. Technol.
,
22
(
5
), pp.
1740
1753
.10.1109/TCST.2014.2317772
10.
Beal
,
C. E.
, and
Gerdes
,
J. C.
,
2013
, “
Model Predictive Control for Vehicle Stabilization at the Limits of Handling
,”
IEEE Trans. Control Syst. Technol.
,
21
(
4
), pp.
1258
1269
.10.1109/TCST.2012.2200826
11.
Huang
,
C.
,
Naghdy
,
F.
, and
Du
,
H.
,
2018
, “
Observer-Based Fault-Tolerant Controller for Uncertain Steer-by-Wire Systems Using the Delta Operator
,”
IEEE/ASME Trans. Mechatronics
,
23
(
6
), pp.
2587
2598
.10.1109/TMECH.2018.2820091
12.
Huang
,
C.
,
Naghdy
,
F.
, and
Du
,
H.
,
2019
, “
Fault Tolerant Sliding Mode Predictive Control for Uncertain Steer-by-Wire System
,”
IEEE Trans. Cybern.
,
49
(
1
), pp.
261
272
.10.1109/TCYB.2017.2771497
13.
Huang
,
C.
,
Naghdy
,
F.
, and
Du
,
H.
,
2019
, “
Sliding Mode Predictive Tracking Control for Uncertain Steer-by-Wire System
,”
Control Eng. Pract.
,
85
, pp.
194
205
.10.1016/j.conengprac.2018.12.010
14.
Kim, E., K. J., and Sunwoo, M.,
2014
, “
Model Predictive Control Strategy for Smooth Path Tracking of Autonomous Vehicles With Steering Actuator Dynamics
,”
Int. J. Automot. Technol.
,
15
(
7
), pp.
1155
1164
.10.1007/s12239-014-0120-9
15.
Wang
,
L. X.
,
1994
,
Adaptive Fuzzy Systems and Control
,
Prentice Hall
,
Englewood Cliffs, NJ
.
16.
Wang
,
Y.
,
Wang
,
D.
, and
Chai
,
T.
,
2011
, “
Extraction and Adaptation of Fuzzy Rules for Friction Modeling and Control Compensation
,”
IEEE Trans. Fuzzy Syst.
,
19
(
4
), pp.
682
693
.10.1109/TFUZZ.2011.2134104
17.
Wang
,
Y.
,
Wang
,
Y.
, and
Zhang
,
H.
,
2019
, “
Robust Adaptive Control of Pemfc Air Supply System Based on Radical Basis Function Neural Network
,”
ASME J. Dyn. Syst. Meas. Control.
,
141
(
6
), p.
064503
.10.1115/1.4042674
18.
Zhang
,
J.
, and
Yang
,
G.
,
2017
, “
Prescribed Performance Fault-Tolerant Control of Uncertain Nonlinear Systems With Unknown Control Directions
,”
IEEE Trans. Autom. Control
,
62
(
12
), pp.
6529
6535
.10.1109/TAC.2017.2705033
19.
Zhang
,
J.
,
Shi
,
P.
, and
Xia
,
Y.
,
2010
, “
Robust Adaptive Sliding-Mode Control for Fuzzy Systems With Mismatched Uncertainties
,”
IEEE Trans. Fuzzy Syst.
,
18
(
4
), pp.
700
711
.10.1109/TFUZZ.2010.2047506
20.
Amini
,
M. R.
,
Shahbakhti
,
M.
, and
Pan
,
S.
,
2018
, “
Adaptive Discrete Second-Order Sliding Mode Control With Application to Nonlinear Automotive Systems
,”
ASME J. Dyn. Syst. Meas. Control
,
140(12
), p.
121010
.10.1115/1.4040208
21.
Sun
,
Z.
,
Zheng
,
J.
,
Man
,
Z.
, and
Wang
,
H.
,
2016
, “
Robust Control of a Vehicle Steer-by-Wire System Using Adaptive Sliding Mode
,”
IEEE Trans. Ind. Electron
,
63
(
4
), pp.
2251
2262
.10.1109/TIE.2015.2499246
22.
Sun
,
Z.
,
Zheng
,
J.
,
Wang
,
H.
, and
Man
,
Z.
,
2017
, “
Adaptive Fast Non-Singular Terminal Sliding Mode Control for a Vehicle Steer-by-Wire System
,”
IET Control Theory Appl.
,
11
(
8
), pp.
1245
1254
.10.1049/iet-cta.2016.0205
23.
Wu
,
X.
,
Zhang
,
M.
, and
Xu
,
M.
,
2019
, “
Active Tracking Control for Steer-by-Wire System With Disturbance Observer
,”
IEEE Trans. Veh. Technol.
,
68
(
6
), pp.
5483
5493
.10.1109/TVT.2019.2910540
24.
Wang
,
H.
,
Man
,
Z.
,
Kong
,
H.
,
Zhao
,
Y.
,
Yu
,
M.
,
Cao
,
Z.
,
Zheng
,
J.
, and
Do
,
M. T.
,
2016
, “
Design and Implementation of Adaptive Terminal Sliding-Mode Control on a Steer-by-Wire Equipped Road Vehicle
,”
IEEE Trans. Ind. Electron.
,
63
(
9
), pp.
5774
5785
.10.1109/TIE.2016.2573239
25.
Lin
,
F.
,
Hung
,
Y.
, and
Ruan
,
K.
,
2014
, “
An Intelligent Second-Order Sliding-Mode Control for an Electric Power Steering System Using a Wavelet Fuzzy Neural Network
,”
IEEE Trans. Fuzzy Syst.
,
22
(
6
), pp.
1598
1611
.10.1109/TFUZZ.2014.2300168
26.
Jin
,
B.
,
Li
,
H.
,
Yan
,
W.
, and
Cao
,
M.
,
202
, “
Distributed Model Predictive Control and Optimization for Linear Systems With Global Constraints and Time-Varying Communication
,”
IEEE Trans. Autom. Control
,
66
(
7
), pp.
3393
3400
.10.1109/TAC.2020.3021528
27.
Li
,
H.
,
Jin
,
B.
, and
Yan
,
W.
,
2021
, “
Distributed Model Predictive Control for Linear Systems Under Communication Noise: Algorithm, Theory and Implementation
,”
Automatica
,
125
, p.
109422
.10.1016/j.automatica.2020.109422
28.
Burton
,
J. A.
, and
Zinober
,
A. S. I.
,
1986
, “
Continuous Approximation of Variable Structure Control
,”
Int. J. Syst. Sci.
,
17
(
6
), pp.
875
885
.10.1080/00207728608926853
29.
Shtessel
,
Y.
,
Taleb
,
M.
, and
Plestan
,
F.
,
2012
, “
A Novel Adaptive-Gain Supertwisting Sliding Mode Controller: Methodology and Application
,”
Automatica
,
48
(
5
), pp.
759
769
.10.1016/j.automatica.2012.02.024
30.
Plestan
,
F.
,
Shtessel
,
Y.
,
Brégeault
,
V.
, and
Poznyak
,
A.
,
2010
, “
New Methodologies for Adaptive Sliding Mode Control
,”
Int. J. Control
,
83
(
9
), pp.
1907
1919
.10.1080/00207179.2010.501385
31.
Levant
,
A.
,
1993
, “
Sliding Order and Sliding Accuracy in Sliding Mode Control
,”
Int. J. Control
,
58
(
6
), pp.
1247
1263
.10.1080/00207179308923053
32.
Laghrouche
,
S.
,
Plestan
,
F.
, and
Glumineau
,
A.
,
2007
, “
Higher Order Sliding Mode Control Based on Integral Sliding Mode
,”
Automatica
,
43
(
3
), pp.
531
537
.10.1016/j.automatica.2006.09.017
33.
Angulo
,
M. T.
,
Fridman
,
L.
, and
Moreno
,
J. A.
,
2013
, “
Output-Feedback Finite-Time Stabilization of Disturbed Feedback Linearizable Nonlinear Systems
,”
Automatica
,
49
(
9
), pp.
2767
2773
.10.1016/j.automatica.2013.05.013
34.
Zhao
,
Z.
,
Cao
,
D.
,
Yang
,
J.
, and
Wang
,
H.
,
2020
, “
High-Order Sliding Mode Observer-Based Trajectory Tracking Control for a Quadrotor Uav With Uncertain Dynamics
,”
Nonlinear Dyn.
,
102
(
4
), pp.
2583
2596
.10.1007/s11071-020-06050-2
35.
Levant
,
A.
,
2003
, “
Higher-Order Sliding Modes, Differentiation and Output-Feedback Control
,”
Int. J. Control
,
76
(
9–10
), pp.
924
941
.10.1080/0020717031000099029
36.
Levant
,
A.
,
2005
, “
Quasi-Continuous High-Order Sliding-Mode Controllers
,”
IEEE Trans. Autom. Control
,
50
(
11
), pp.
1812
1816
.10.1109/TAC.2005.858646
37.
Huang
,
Y.
,
Kuo
,
T.
, and
Chang
,
S.
,
2008
, “
Adaptive Sliding-Mode Control for Nonlinearsystems With Uncertain Parameters
,”
IEEE Trans. Syst. Man Cybern. B
,
38
(
2
), pp.
534
539
.10.1109/TSMCB.2007.910740
38.
Taleb
,
M.
,
Plestan
,
F.
, and
Bououlid
,
B.
,
2015
, “
An Adaptive Solution for Robust Control Based on Integral High-Order Sliding Mode Concept
,”
Int. J. Robust Nonlinear Control
,
25
(
8
), pp.
1201
1213
.10.1002/rnc.3135
39.
Edwards
,
C.
, and
Shtessel
,
Y.
,
2016
, “
Adaptive Dual-Layer Super-Twisting Control and Observation
,”
Int. J. Control
,
89
(
9
), pp.
1759
1766
.10.1080/00207179.2016.1175030
40.
Li
,
P.
,
Yu
,
X.
, and
Xiao
,
B.
,
2018
, “
Adaptive Quasi-Optimal Higher Order Sliding-Mode Control Without Gain Overestimation
,”
IEEE Trans. Ind. Informat.
,
14
(
9
), pp.
3881
3891
.10.1109/TII.2017.2787701
41.
Ma
,
B.
,
Wang
,
Z.
, and
Wang
,
Y.
,
2021
, “
Event-Triggered Adaptive Higher-Order Sliding Mode Tracking Control for Steer-by-Wire Systems
,”
ASME J. Dyn. Sys. Meas. Control
,
143
(
7
), p.
071008
.10.1115/1.4049794
42.
Edwards
,
C.
, and
Shtessel
,
Y. B.
,
2016
, “
Adaptive Continuous Higher Order Sliding Mode Control
,”
Automatica
,
65
, pp.
183
190
.10.1016/j.automatica.2015.11.038
43.
Laghrouche
,
S.
,
Harmouche
,
M.
,
Ahmed
,
F. S.
, and
Chitour
,
Y.
,
2015
, “
Control of Pemfc Air-Feed System Using Lyapunov-Based Robust and Adaptive Higher Order Sliding Mode Control
,”
IEEE Trans. Control. Syst. Technol.
,
23
(
4
), pp.
1594
1601
.10.1109/TCST.2014.2371826
44.
Na
,
J.
,
Chen
,
Q.
,
Ren
,
X.
, and
Guo
,
Y.
,
2014
, “
Adaptive Prescribed Performance Motion Control of Servo Mechanisms With Friction Compensation
,”
IEEE Trans. Ind. Electron
,
61
(
1
), pp.
486
494
.10.1109/TIE.2013.2240635
45.
K.Shyu
,
K.
,
K.Lai
,
C.
,
Tsai
,
Y. W.
, and
I.Yang
,
D.
,
2002
, “
A Newly Robust Controller Design for the Position Control of Permanent-Magnet Synchronous Motor
,”
IEEE Trans. Ind. Electron.
,
49
(
3
), pp.
558
565
.10.1109/TIE.2002.1005380
46.
Utkin
,
V. I.
, and
Poznyak
,
A. S.
,
2013
, “
Adaptive Sliding Mode Control With Application to Super-Twist Algorithm: Equivalent Control Method
,”
Automatica
,
49
(
1
), pp.
39
47
.10.1016/j.automatica.2012.09.008
47.
Bhat
,
S. P.
, and
Bernstein
,
D. S.
,
2000
, “
Finite-Time Stability of Continuous Autonomous Systems
,”
SIAM J. Control Optim.
,
38
(
3
), pp.
751
766
.10.1137/S0363012997321358
48.
Sun
,
J.
,
Wang
,
Y.
,
Wang
,
Y.
, and
Shen
,
Y.
,
2016
, “
Finite-Time Synchronization Between Two Complex-Variable Chaotic Systems With Unknown Parameters Via Nonsingular Terminal Sliding Mode Control
,”
Nonlinear Dyn.
,
85
(
2
), pp.
1105
1117
.10.1007/s11071-016-2747-8
49.
Defoort
,
M.
,
Floquet
,
T.
,
Kokosy
,
A.
, and
Perruquetti
,
W.
,
2009
, “
A Novel Higher Order Sliding Mode Control Scheme
,”
Syst. Control Lett.
,
58
(
2
), pp.
102
108
.10.1016/j.sysconle.2008.09.004
50.
Li
,
Y.
,
Qiang
,
S.
,
Zhuang
,
X.
, and
Kaynak
,
O.
,
2004
, “
Robust and Adaptive Backstepping Control for Nonlinear Systems Using Rbf Neural Networks
,”
IEEE Trans. Neural Networks
,
15
(
3
), pp.
693
701
.10.1109/TNN.2004.826215
You do not currently have access to this content.