Abstract

This paper presents the results and analysis of an exhaustive simulation study where switched fractional order model reference adaptive control (SFOMRAC) is used for first order plants, along with the analytical proof of boundedness and convergence of the scheme. The analysis is focused on the controlled system behavior through the integral of the time-weighted squared control error (ITSE) and on the control energy through the integral of the squared control signal (ISI). Controller parameters such as fractional order, adaptive gain, and switching time are varied along the simulation studies, as well as plant parameters and reference models. The results show that SFOMRAC controllers can be found for every plant and reference model used such that both system behavior and control energy can be improved, compared to equivalent nonswitched fractional order and integer order control strategies.

References

1.
Kilbas
,
A.
,
Srivastava
,
H.
, and
Trujillo
,
J.
,
2006
,
Theory and Applications of Fractional Differential Equations
,
Elsevier
,
Amsterdam, The Netherlands
.
2.
Ladaci
,
S.
,
Loiseau
,
J.
, and
Charef
,
A.
,
2008
, “
Fractional Order Adaptive High-Gain Controllers for a Class of Linear Systems
,”
Commun. Nonlinear Sci. Numer. Simul.
,
13
(
4
), pp.
707
714
.10.1016/j.cnsns.2006.06.009
3.
Aguila-Camacho
,
N.
, and
Duarte-Mermoud
,
M. A.
,
2013
, “
Fractional Adaptive Control for an Automatic Voltage Regulator
,”
ISA Trans.
,
52
(
6
), pp.
807
815
.10.1016/j.isatra.2013.06.005
4.
Suárez
,
J.
,
Vinagre
,
B.
, and
Chen
,
Y. Q.
,
2008
, “
A Fractional Adaptation Scheme for Lateral Control of an AGV
,”
J. Vib. Control
,
14
, pp.
1499
1511
.10.1177/1077546307087434
5.
Vinagre
,
B.
,
Petrás
,
I.
,
Podlubny
,
I.
, and
Chen
,
Y. Q.
,
2002
, “
Using Fractional Order Adjustment Rules and Fractional Order Reference Models in Model-Reference Adaptive Control
,”
Nonlinear Dyn.
,
29
(
1-4
), pp.
269
279
.10.1023/A:1016504620249
6.
Aguila-Camacho
,
N.
, and
Duarte-Mermoud
,
M. A.
,
2016
, “
Improving the Control Energy in Model Reference Adaptive Controllers Using Fractional Adaptive Laws
,”
IEEE/CAA J. Autom. Sin.
,
3
(
3
), pp.
332
337
.10.1109/JAS.2016.7508809
7.
Aguila-Camacho
,
N.
, and
Ponce
,
C.
,
2018
, “
Improving the Energy Use for First Order Plus Time Delay Plants With Fractional Proportional Integral Controllers: A Preliminary Analysis
,” IEEE ICA-ACCA 2018 - IEEE International Conference on Automation/23rd Congress of the Chilean Association of Automatic Control: Towards an Industry 4.0, Concepción, Chile, Oct. 17–19, Paper 33.
8.
Aguila-Camacho
,
N.
, and
Gallegos
,
J.
,
2019
, “
Switched Fractional Order Model Reference Adaptive Control for First Order Plants
,” IEEE CHILEAN Conference on Electrical, Electronics Engineering, Information and Communication Technologies,
CHILECON2019
, Valparaíso, Chile, Oct. 29–31, Paper 135.
9.
Aguila-Camacho
,
N.
, and
Gallegos
,
J.
,
2020
, “
Switched Fractional Order Model Reference Adaptive Control for Unknown Linear Time Invariant Systems
,”
IFAC World Congress
, Berlín, Germany, July 11–17, pp.
3731
3736
.
10.
Narendra
,
K.
, and
Annaswamy
,
A.
,
2005
,
Stable Adaptive Systems
,
Dover Publications
, Mineola,
NY
.
11.
Aguila-Camacho
,
N.
, and
Duarte-Mermoud
,
M. A.
,
2016
, “
Boundedness of the Solutions for Certain Classes of Fractional Differential Equations With Application to Adaptive Systems
,”
ISA Trans.
,
60
, pp.
82
88
.10.1016/j.isatra.2015.11.013
12.
Diethelm
,
K.
,
2004
,
The Analysis of Fractional Differential Equations. An Application-Oriented Exposition Using Differential Operators of Caputo Type, Lecture Notes in Mathematics
,
Springer-Verlag
, Heidelberg,
Germany
.
13.
Gallegos
,
J.
,
Aguila-Camacho
,
N.
, and
Duarte-Mermoud
,
M. A.
,
2019
, “
Smooth Solutions to Mixed-Order Fractional Differential Systems With Applications to Stability Analysis
,”
J. Integr. Equations Appl.
,
31
(
1
), pp.
59
84
.10.1216/JIE-2019-31-1-59
14.
Valério
,
D.
, and
Costa
,
J. D.
,
2004
, “
Ninteger: A Non-Integer Control Toolbox for MatLab
,”
First IFAC Workshop on Fractional Differentiation and Applications
,
Bordeaux, France
, July 19–21, pp.
208
213
.https://www.researchgate.net/publication/228993622_Ninteger_a_noninteger_control_toolbox_for_MatLab
You do not currently have access to this content.