Abstract

The task of trajectory planning for a dual-mirror optical pointing system greatly benefits from carefully designed dynamic input signals. This paper summarizes the application of multivariable input shaping (IS) for a dual-mirror system, starting from initial open-loop step-response data. The optical pointing system presented consists of two fast steering mirrors (FSM) for which dynamically coupled input signals are designed, while adhering to mechanical and input signal constraints. For the solution, the planned trajectories for the dual-mirrors are determined via (inverse) kinematic analysis. A linear program (LP) problem is used to compute the dynamic input signal for each of the FSMs, with one of the mirrors acting as an image motion compensation device that guarantees tracking of a planned trajectory within a specified accuracy and the operating constraints of the FSMs.

References

1.
Kluk
,
D. J.
,
Boulet
,
M. T.
, and
Trumper
,
D. L.
,
2012
, “
A High-Bandwidth, High-Precision, Two-Axis Steering Mirror With Moving Iron Actuator
,”
Mechatronics
,
22
(
3
), pp.
257
270
.10.1016/j.mechatronics.2012.01.008
2.
Watkins
,
R. J.
,
Chen
,
H.-J.
,
Agrawal
,
B. N.
, and
Shin
,
Y. S.
,
2004
, “
Optical Beam Jitter Control
,”
Free-Space Laser Communication Technologies XVI
, Vol. 5338, SPIE, pp.
204
213
.10.1117/12.529457
3.
Cochran
,
R. W.
, and
Vassar
,
R. H.
,
1990
, “
Fast-Steering Mirrors in Optical Control Systems
,”
Advances in Optical Structure Systems
, Vol. 1303, SPIE, pp.
245
251
.10.1117/12.21507
4.
Hilkert
,
J. M.
,
2005
, “
Kinematic Algorithms for Line-of-Sight Pointing and Scanning Using Ins/Gps Position and Velocity Information
,”
Acquisition, Tracking, and Pointing XIX
, Vol. 5810, SPIE, pp.
11
22
.10.1117/12.602265
5.
de Callafon
,
R. A.
, and
Miller
,
D. J.
,
2012
, “
Identification of Linear Time-Invariant Systems Via Constrained Step-Based Realization
,”
16th IFAC Symposium on System Identification
, Brussels, Belgium
.
6.
Boettcher
,
U.
,
de Callafon
,
R. A.
, and
Talke
,
F. E.
,
2009
, “
Data Based Modeling and Control of a Dual-Stage Actuator Hard Disk Drive
,”
Proceeding of 48th IEEE Conference on Decision and Control and 28th Chinese Control Conference
, Shanghai, China, Dec. 15–18, pp.
8316
8321
.10.1109/CDC.2009.5399480
7.
Dautt-Silva
,
A.
, and
de Callafon
,
R. A.
,
2018
, “
Optimal Input Shaping With Finite Resolution Computed From Step-Response Experimental Data
,”
Annual American Control Conference
, Milwaukee, WI, June 27–29, pp.
6703
6708
.10.23919/ACC.2018.8430805
8.
Dautt-Silva
,
A.
, and
de Callafon
,
R. A.
,
2020
, “
Multivariable Dynamic Input Shaping for Two-Axis Fast Steering Mirror
,”
IFAC-PapersOnLine
,
53
(
2
), pp.
8644
8649
.10.1016/j.ifacol.2020.12.464
9.
Boyd
,
S.
, and
Vandenbergue
,
L.
,
2004
,
Convex Optimization
,
Cambridge University Press
, Cambridge, UK.
10.
Gill
,
P. E.
,
M
,
W.
, and
Wright
,
M. H.
,
1991
,
Numerical Linear Algebra and Optimization
,
Addison-Wesley Publishing Company
, Redwood City, CA.
11.
Jenkins
,
S. T.
, and
Hilkert
,
J. M.
,
1989
, “
Line of Sight Stabilization Using Image Motion Compensation
,”
Acquisition, Tracking, and Pointing III
, Vol. 1111, SPIE, pp.
98
115
.10.1117/12.977973
You do not currently have access to this content.