Abstract

This paper deals with the enforcement of safety constraints using control barrier functions (CBFs). We focus on dynamic systems that have high relative degree and where the output needs to be differentiated multiple times to obtain an explicit dependence on the control input. As the system approaches operating points that are close to the safety boundary, the CBF shrinks the allowed control action space. To quantify this shrinkage, we propose practical proxy metrics to capture the volume of the CBFs action space. We exploit these proxy metrics to derive sum-of-squares optimization formulations that synthesize CBFs with high-order degree, in particular their extended class K functions. We apply this tuning technique to synthesize CBFs that avoid vehicle collisions in an adaptive cruise control problem. Simulation results demonstrate the ability of our tuning approach to reduce loss of control performance when the system operates close to the safety boundary.

References

1.
Paden
,
B.
,
Cap
,
M.
,
Yong
,
S. Z.
,
Yershov
,
D.
, and
Frazzoli
,
E.
,
2016
, “
A Survey of Motion Planning and Control Techniques for Self-Driving Urban Vehicles
,”
IEEE Trans. Intell. Veh.
,
1
(
1
), pp.
33
55
.10.1109/TIV.2016.2578706
2.
Mayne
,
D.
,
2014
, “
Model Predictive Control: Recent Developments and Future Promise
,”
Automatica
,
50
(
12
), pp.
2967
2986
.10.1016/j.automatica.2014.10.128
3.
Garone
,
E.
,
Di Cairano
,
S.
, and
Kolmanovsky
,
I. V.
,
2017
, “
Reference and Command Governors for Systems With Constraints: A Survey on Theory and Applications
,”
Automatica
,
75
, pp.
306
328
.10.1016/j.automatica.2016.08.013
4.
Eren
,
U.
,
Prach
,
A.
,
Koçer
,
B. B.
,
Raković
,
S. V.
,
Kayacan
,
E.
, and
Açıkmeşe
,
B.
,
2017
, “
Model Predictive Control in Aerospace Systems: Current State and Opportunities
,”
J. Guid., Control, Dyn.
,
40
(
7
), pp.
1541
1566
.10.2514/1.G002507
5.
Bansal
,
S.
,
Chen
,
M.
,
Herbert
,
S.
, and
Tomlin
,
C. J.
,
2017
, “
Hamilton-Jacobi Reachability: A Brief Overview and Recent Advances
,” IEEE 56th Annual Conference on Decision and Control (
CDC
), Melbourne, Australia, Dec. 12–15, pp.
2242
2253
.10.1109/CDC.2017.8263977
6.
Ames
,
A. D.
,
Coogan
,
S.
,
Egerstedt
,
M.
,
Notomista
,
G.
,
Sreenath
,
K.
, and
Tabuada
,
P.
,
2019
, “
Control Barrier Functions: Theory and Applications
,” 18th European Control Conference (
ECC
), Naples, Italy, pp.
3420
3431
.10.23919/ECC.2019.8796030
7.
Ames
,
A. D.
,
Xu
,
X.
,
Grizzle
,
J. W.
, and
Tabuada
,
P.
,
2017
, “
Control Barrier Function Based Quadratic Programs for Safety Critical Systems
,”
IEEE Trans. Autom. Control.
,
62
(
8
), pp.
3861
3876
.10.1109/TAC.2016.2638961
8.
Xu
,
X.
,
2018
, “
Constrained Control of Input–Output Linearizable Systems Using Control Sharing Barrier Functions
,”
Automatica
,
87
, pp.
195
201
.10.1016/j.automatica.2017.10.005
9.
Orosz
,
G.
, and
Ames
,
A. D.
,
2019
, “
Safety Functionals for Time Delay Systems
,” American Control Conference (
ACC
), Philadelphia, PA, July 10–12, pp.
4374
4379
.10.23919/ACC.2019.8814681
10.
Nguyen
,
Q.
, and
Sreenath
,
K.
,
2016
, “
Exponential Control Barrier Functions for Enforcing High Relative-Degree Safety-Critical Constraints
,”
American Control Conference
, Boston, MA, July 6–8, pp.
322
328
.10.1109/ACC.2016.7524935
11.
Gurriet
,
T.
,
Nilsson
,
P.
,
Singletary
,
A.
, and
Ames
,
A. D.
,
2019
, “
Realizable Set Invariance Conditions for Cyber-Physical Systems
,”
American Control Conference
, Philadelphia, PA, July 10–12, pp.
3642
3649
.10.23919/ACC.2019.8815332
12.
Khalil
,
H. K.
,
2002
,
Nonlinear Systems
, 3rd ed.,
Prentice Hall
,
Upper Saddle River, NJ
.
13.
Egerstedt
,
M.
,
Pauli
,
J. N.
,
Notomista
,
G.
, and
Hutchinson
,
S.
,
2018
, “
Robot Ecology: Constraint-Based Control Design for Long Duration Autonomy
,”
Annu. Rev. Control
,
46
, pp.
1
7
.10.1016/j.arcontrol.2018.09.006
14.
de Castro
,
R.
, and
Brembeck
,
J.
,
2018
, “
Supervised Trajectory Tracking Control
,” 21st International Conference on Intelligent Transportation Systems (
ITSC
), Maui, HI, Nov. 4–7, pp.
951
957
.10.1109/ITSC.2018.8569377
15.
Wang
,
L.
,
Han
,
D.
, and
Egerstedt
,
M.
,
2018
, “
Permissive Barrier Certificates for Safe Stabilization Using Sum-of-Squares
,” Annual American Control Conference (
ACC
), Milwaukee, WI, June 24–27, pp.
585
590
.10.23919/ACC.2018.8431617
16.
de Castro
,
R.
, and
Brembeck
,
J.
,
2019
, “
Lyapunov-Based Control Allocation for Over-Actuated Nonlinear Systems
,” American Control Conference (
ACC
), Philadelphia, PA, July 10–12, pp.
5033
5038
.10.23919/ACC.2019.8814326
17.
Rodriguez
,
M.
, and
Fathy
,
H.
,
2022
, “
Vehicle and Traffic Light Control Through Gradient-Based Coordination and Control Barrier Function Safety Regulation
,”
ASME J. Dyn. Syst., Meas., Control
,
144
(
1
), p.
011104
.10.1115/1.4052713
18.
Ghaffari
,
A.
,
2020
, “
Operational Safety Control for Unmanned Aerial Vehicles Using Modular Barrier Functions
,” American Control Conference (
ACC
), Denver, CO, July 1–3, pp.
1719
1724
.10.23919/ACC45564.2020.9147536
19.
Basso
,
E. A.
, and
Pettersen
,
K. Y.
,
2020
, “
Task-Priority Control of Redundant Robotic Systems Using Control Lyapunov and Control Barrier Function Based Quadratic Programs
,”
IFAC-PapersOnLine
,
53
(
2
), pp.
9037
9044
.10.1016/j.ifacol.2020.12.2024
20.
Shaw Cortez
,
W.
,
Oetomo
,
D.
,
Manzie
,
C.
, and
Choong
,
P.
,
2019
, “
Control Barrier Functions for Mechanical Systems: Theory and Application to Robotic Grasping
,”
IEEE Trans. Control Syst. Technol.
,
29
(
2
), pp. 530–545.10.1109/TCST.2019.2952317
21.
Wu
,
G.
, and
Sreenath
,
K.
,
2015
, “
Safety-Critical and Constrained Geometric Control Synthesis Using Control Lyapunov and Control Barrier Functions for Systems Evolving on Manifolds
,” American Control Conference (
ACC
), Chicago, IL, July 1–3, pp.
2038
2044
.10.1109/ACC.2015.7171033
22.
Chen
,
Y.
,
Jankovic
,
M.
,
Santillo
,
M.
, and
Ames
,
A. D.
,
2021
, “
Backup Control Barrier Functions: Formulation and Comparative Study
,” 60th IEEE Conference on Decision and Control (
CDC
), Austin, TX, Dec. 14-17, pp.
6835
6841
.10.1109/CDC4-5484.2021.9683111
23.
Hsu
,
S. C.
,
Xu
,
X.
, and
Ames
,
A. D.
,
2015
, “
Control Barrier Function Based Quadratic Programs With Application to Bipedal Robotic Walking
,” American Control Conference (
ACC
), Chicago, IL, July 1–3, pp.
4542
4548
.10.1109/ACC.2015.7172044
24.
Xiao
,
W.
, and
Belta
,
C.
,
2022
, “
High Order Control Barrier Functions
,”
IEEE Trans. Automat. Contr.
,
67
(
7
), pp. 3655–3662.10.1109/TAC.2022.3202088
25.
Breeden
,
J.
, and
Panagou
,
D.
,
2021
, “
High Relative Degree Control Barrier Functions Under Input Constraints
,” 60th IEEE Conference on Decision and Control (
CDC
), Austin, TX, Dec. 14–17, pp.
6119
6124
.10.1109/CDC45484.2021.9683705
26.
Habibi
,
H.
,
Rahimi Nohooji
,
H.
, and
Howard
,
I.
,
2019
, “
Backstepping Nussbaum Gain Dynamic Surface Control for a Class of Input and State Constrained Systems With Actuator Faults
,”
Inf. Sci.
,
482
, pp.
27
46
.10.1016/j.ins.2018.12.084
27.
Tee
,
K. P.
,
Ge
,
S. S.
, and
Tay
,
E. H.
,
2009
, “
Barrier Lyapunov Functions for the Control of Output-Constrained Nonlinear Systems
,”
Automatica
,
45
(
4
), pp.
918
927
.10.1016/j.automatica.2008.11.017
28.
He
,
W.
,
Huang
,
H.
, and
Ge
,
S. S.
,
2017
, “
Adaptive Neural Network Control of a Robotic Manipulator With Time-Varying Output Constraints
,”
IEEE Trans. Cybern.
,
47
(
10
), pp.
3136
3147
.10.1109/TCYB.2017.2711961
29.
Tan
,
X.
,
Cortez
,
W. S.
, and
Dimarogonas
,
D. V.
,
2022
, “
High-Order Barrier Functions: Robustness, Safety, and Performance-Critical Control
,”
IEEE Trans. Automat. Contr.
,
67
(
6
), pp.
3021
3028
.10.1109/TAC.2021.3089639
30.
Agrawal
,
D. R.
, and
Panagou
,
D.
,
2021
, “
Safe Control Synthesis Via Input Constrained Control Barrier Functions
,” 60th IEEE Conference on Decision and Control (
CDC
), Austin, TX, Dec. 14–17, pp.
6113
6118
.10.1109/CDC45484.2021.9682938
31.
Zeng
,
J.
,
Zhang
,
B.
,
Li
,
Z.
, and
Sreenath
,
K.
,
2021
, “
Safety-Critical Control Using Optimal-Decay Control Barrier Function With Guaranteed Point-Wise Feasibility
,” American Control Conference (
ACC
), Virtual, 2021, pp. 3856–3863,.10.23919/ACC50511.2021.9482626
32.
Xiao
,
W.
, and
Belta
,
C.
,
2019
, “
Control Barrier Functions for Systems With High Relative Degree
,” IEEE 58th Conference on Decision and Control (
CDC
), Nice, France, Dec. 11–13, pp.
474
479
.10.1109/CDC40024.2019.9029455
33.
Xiao
,
W.
,
Belta
,
C.
, and
Cassandras
,
C. G.
,
2022
, “
Adaptive Control Barrier Functions
,”
IEEE Trans. Autom. Contr.
,
67
(
5
), pp.
2267
2281
.10.1109/TAC.2021.3074895
34.
Xiong
,
Y.
,
Zhai
,
D.-H.
,
Tavakoli
,
M.
, and
Xia
,
Y.
,
2022
, “
Discrete-Time Control Barrier Function: High-Order Case and Adaptive Case
,”
IEEE Trans Cybern
.10.1109/TCYB.2022.3170607
35.
Zeng
,
J.
,
Li
,
Z.
, and
Sreenath
,
K.
,
2021
, “
Enhancing Feasibility and Safety of Nonlinear Model Predictive Control With Discrete-Time Control Barrier Functions
,” 60th IEEE Conference on Decision and Control (
CDC
), Austin, TX, Dec. 14–17, pp.
61
37
6144
.10.1109/CDC45484.2021.9683174
36.
Ma
,
H.
,
Zhang
,
B.
,
Tomizuka
,
M.
, and
Sreenath
,
K.
,
2022
, “
Learning Differentiable Safety-Critical Control Using Control Barrier Functions for Generalization to Novel Environments
,” European Control Conference (
ECC
), London, UK, July 12–15, pp.
1301
1308
.10.23919/ECC55457.2022.9838179
37.
Parrilo
,
P. A.
,
2003
, “
Semidefinite Programming Relaxations for Semialgebraic Problems
,”
Math. Program.
,
96
(
2
), pp.
293
320
.10.1007/s10107-003-0387-5
38.
Vandenberghe
,
L.
, and
Boyd
,
S.
,
1996
, “
Semidefinite Programming
,”
SIAM Rev.
,
38
(
1
), pp.
49
95
.10.1137/1038003
39.
Lofberg
,
J.
,
2004
, “
YALMIP: A Toolbox for Modeling and Optimization in MATLAB
,”
IEEE International Conference on Robotics and Automation (IEEE Cat. No.04CH37508)
, Taipei, Taiwan, Sept. 2–4, pp.
284
289
.10.1109/CACSD.2004.1393890
40.
Xu
,
X.
,
Grizzle
,
J. W.
,
Tabuada
,
P.
, and
Ames
,
A. D.
,
2018
, “
Correctness Guarantees for the Composition of Lane Keeping and Adaptive Cruise Control
,”
IEEE Trans. Autom. Sci. Eng.
,
15
(
3
), pp.
1216
1229
.10.1109/TASE.2017.2760863
41.
Chen
,
Y.
,
Hereid
,
A.
,
Peng
,
H.
, and
Grizzle
,
J.
,
2019
, “
Enhancing the Performance of a Safe Controller Via Supervised Learning for Truck Lateral Control
,”
ASME J. Dyn. Syst. Meas. Control
,
141
(
10
), p.
101005
.10.1115/1.4043487
42.
Singletary
,
A.
,
Klingebiel
,
K.
,
Bourne
,
J.
,
Browning
,
A.
,
Tokumaru
,
P.
, and
Ames
,
A.
,
2021
, “
Comparative Analysis of Control Barrier Functions and Artificial Potential Fields for Obstacle Avoidance
,” IEEE/RSJ International Conference on Intelligent Robots and Systems (
IROS
), Prague, Czech Republic, pp.
8129
8136
.10.1109/IROS51168.2021.9636670
43.
Kosaraju
,
K. C.
,
Sivaranjani
,
S.
, and
Gupta
,
V.
,
2022
, “
Safety During Transient Response in Direct Current Microgrids Using Control Barrier Functions
,”
IEEE Control Syst. Lett.
,
6
, pp.
337
342
.10.1109/LCSYS.2021.3074471
44.
Khalil
,
H.
,
2002
,
Nonlinear Systems
, 3rd ed.,
Prentice Hall
, Upper Saddle River, NJ.
45.
Blanchini
,
F.
,
1999
, “
Set Invariance in Control
,”
Automatica
,
35
(
11
), pp.
1747
1767
.10.1016/S0005-1098(99)00113-2
46.
Lofberg
,
J.
,
2009
, “
Pre- and Post-Processing Sum-of-Squares Programs in Practice
,”
IEEE Trans. Autom. Control
,
54
(
5
), pp.
1007
1011
.10.1109/TAC.2009.2017144
47.
Seiler
,
P.
, and
Balas
,
G. J.
,
2010
, “
Quasiconvex Sum-of-Squares Programming
,” 49th IEEE Conference on Decision and Control (
CDC
), Atlanta, GA, Dec. 15–17, pp.
3337
3342
.10.1109/CDC.2010.5717672
48.
Chesi
,
G.
,
2005
, “
Domain of Attraction: Estimates for Non-Polynomial Systems Via LMIs
,”
Proceedings of 16th IFAC World Congress
, Prague, Czech Republic, July 3–8.
49.
Topcu
,
U.
,
Packard
,
A.
, and
Seiler
,
P.
,
2008
, “
Local Stability Analysis Using Simulations and Sum-of-Squares Programming
,”
Automatica
,
44
(
10
), pp.
2669
2675
.10.1016/j.automatica.2008.03.010
50.
Boyd
,
S.
, and
Vandenberghe
,
L.
,
2015
,
Convex Optimization
,
Cambridge University Press
,
Cambridge
(18. print ed.).
51.
Tooranjipour
,
P.
, and
Kiumarsi
,
B.
,
2022
, “
Constructing Safety Barrier Certificates for Unknown Linear Optimal Control Systems
,” IEEE 17th International Conference on Control & Automation (
ICCA
), Naples, Italy, June 27–30, pp.
213
219
.10.1109/ICCA54724.2022.9831890
52.
Xu
,
X.
,
Tabuada
,
P.
,
Grizzle
,
J. W.
, and
Ames
,
A. D.
,
2015
, “
Robustness of Control Barrier Functions for Safety Critical Control
,”
IFAC-PapersOnLine
,
48
(
27
), pp.
54
61
.10.1016/j.ifacol.2015.11.152
53.
Jankovic
,
M.
,
2018
, “
Robust Control Barrier Functions for Constrained Stabilization of Nonlinear Systems
,”
Automatica
,
96
, pp.
359
367
.10.1016/j.automatica.2018.07.004
54.
Sturm
,
J. F.
,
1999
, “
Using SeDuMi 1.02, a Matlab Toolbox for Optimization Over Symmetric Cones
,”
Optim. Methods Softw.
,
11
(
1–4
), pp.
625
653
.10.1080/10556789908805766
55.
Ploeg
,
J.
,
van de Wouw
,
N.
, and
Nijmeijer
,
H.
,
2014
, “
Lp String Stability of Cascaded Systems: Application to Vehicle Platooning
,”
IEEE Trans. Control Syst. Technol.
,
22
(
2
), pp.
786
793
.10.1109/TCST.2013.2258346
56.
Grant
,
M.
, and
Boyd
,
S.
,
2013
, “
CVX: Matlab Software for Disciplined Convex Programming
,” Version 2.0 beta, accessed Nov. 22, 2022, http://cvxr.com/cvx
57.
Mattingley
,
J.
, and
Boyd
,
S.
,
2012
, “
CVXGEN: A Code Generator for Embedded Convex Optimization
,”
Optim. Eng.
,
13
(
1
), pp.
1
27
.10.1007/s11081-011-9176-9
You do not currently have access to this content.