Abstract

This paper describes the development and evaluation of a novel equivalent fluid circuit model capable of accurately predicting the performance of a load-type bistable supersonic fluidic oscillator. The model utilizes some aspects of previous models that are available in the literature. It is based on a quasi-steady assumption and includes a special nonlinear element to account for certain aspects of the oscillator switching mechanism in addition to the traditional fluid resistance, capacitance, and inductance. A new technique for modeling a junction in a fluid duct network is also presented. Unlike previous studies which made use of empirical experimental data or analytical assumptions to estimate the fluid element parameter values and form of the nonlinearity, the current method utilizes steady, computational fluid dynamic techniques to evaluate the parameters and nonlinearity which cannot be accurately determined analytically. A simplification of the model is also used to establish the criteria for oscillations to exist. The transient solution of the model equations is then shown to give good quantitative agreement with previous experimental values of the oscillation frequency and amplitude. The model is also capable of predicting certain operational limitations and other trends in the data. Finally, the usefulness and robustness of the model are also demonstrated by showing the ease with which a parameter and design changes can be investigated.

References

1.
Ryzer
,
E.
,
Green
,
D.
,
Rankin
,
G.
,
Xu
,
S.
, and
Dastgiri
,
M.
,
2022
, “
Oscillation-Enhanced Superplastic Forming of Aluminum Alloy 5083 and Titanium Alloy Ti-6Al-4V
,”
33rd Aeromat Conference and Exposition
, Pasadena, CA, Mar. 14–17, No. 55019.
2.
Ryzer
,
E.
,
2020
, “
Use of a Supersonic Fluidic Oscillator in Superplastic Forming and System for Same
,” U.S. Patent No. 10,875,072 B2.
3.
Dastgiri
,
M. S.
,
Fuerth
,
Z.
,
Kiawi
,
L.
,
Ryzer
,
E.
, and
Green
,
D. E.
,
2022
, “
Superplastic Behaviour of AA5083 Sheets in the Presence of an Oscillating Load
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
1238
(
1
), p.
012012
.10.1088/1757-899X/1238/1/012012
4.
Gregory
,
J.
, and
Tomac
,
M. N.
,
2013
, “
A Review of Fluidic Oscillator Development
,”
43rd Fluid Dynamics Conference
,
American Institute of Aeronautics and Astronautics
, Diego, CA, June 24–27, Paper No.
2013
2474
.
5.
Foster
,
K.
, and
Parker
,
G. A.
,
1970
,
Fluidics: Components and Circuits
,
Wiley-Interscience
,
Chichester, UK
.
6.
McGeachy
,
J. D.
, and
Chow
,
W. L.
,
1973
, “
A Study of Feedback Fluid Jet Oscillator With a Supersonic Power Jet. Part I. Presentation and Interpretation of the Experimental Data
,”
ASME J. Dyn. Sys. Meas. Control
,
95
(
2
), pp.
180
184
.10.1115/1.3426676
7.
Ito
,
T.
,
Suematsu
,
Y.
, and
Hattori
,
Y.
,
1974
, “
A Study on a Bistable Fluid Amplifier Load Oscillator: 2nd Report, a Mathematical Model for the Oscillator
,”
Bull. JSME
,
17
(
103
), pp.
97
105
.10.1299/jsme1958.17.97
8.
Vedel
,
S.
,
2009
,
Millisecond Dynamics in Microfluidics: Equivalent Circuit Theory and Experiment
, Master Thesis, Department of Micro and Nanotechnology,
Technical University of Denmark
, Denmark.
9.
Hiroki
,
F.
,
Yamamoto
,
K.
, and
Nasuda
,
T.
,
1993
, “
Fluidic Oscillator Using a Supersonic Bistable Device and Its Oscillation Frequency
,”
J. Fluid Control
,
21
(
4
), pp.
28
47
.
10.
Xu
,
S.
,
2018
, “
Experimental Investigation of a Bi-Stable Supersonic Fluidic Oscillator
,” Electronic Theses and Dissertations,
Mechanical Engineering, University of Windsor
,
Canada
.
11.
Xu
,
S.
,
Ryzer
,
E.
, and
Rankin
,
G. W.
,
2022
, “
A Robust Pseudo-Three-Dimensional Computational Fluid Dynamic Approach for Industrial Applications
,”
ASME J. Fluids Eng.
,
144
(
9
), p.
094502
.10.1115/1.4053970
12.
Xu
,
S.
,
Ryzer
,
E.
, and
Rankin
,
G. W.
,
2022
, “
An Investigation of a Newly Developed Bistable Load-Type Supersonic Fluidic Oscillator for Generating Large-Amplitude Pressure Pulsations
,”
ASME J. Fluids Eng.
(Accepted).
13.
Karnopp
,
D. C.
,
Margolis
,
D. L.
, and
Rosenberg
,
R. C.
,
2012
,
System Dynamics: Modeling, Simulation, and Control of Mechatronic Systems
,
Wiley
, Hoboken, NJ.
14.
Soni
,
B.
,
Suri
,
A.
,
Nayak
,
A. K.
, and
Miguel
,
A. F.
,
2022
, “
Simplified Lumped Parameter Model for Oscillatory Flow in an Elastic Tube: A Hierarchical Approach
,”
ASME J. Fluids Eng.
,
144
(
8
), p.
081301
.10.1115/1.4053553
15.
Kirshner
,
J. M.
, and
Katz
,
S.
,
1975
, “
Chapter 2—Passive Components
,”
Design Theory of Fluidic Components
,
J. M.
Kirshner
, and
S.
Katz
, eds.,
Academic Press
, Cambridge, MA, pp.
14
62
.
16.
Stanley
,
A. A.
,
Amini
,
A.
,
Glick
,
C.
,
Usevitch
,
N.
,
Mengüç
,
Y.
, and
Keller
,
S. J.
,
2020
, “
Lumped-Parameter Response Time Models for Pneumatic Circuit Dynamics
,”
ASME J. Dyn. Syst. Meas. Control
,
143
(
5
), p.
051001
.10.1115/1.4049009
17.
Tan
,
J.
,
Stelson
,
K. A.
, and
Janni
,
K. A.
,
1994
, “
Compressible-Flow Modeling With Pseudo Bond Graphs
,”
ASME J. Dyn. Syst. Meas. Control
,
116
(
2
), pp.
272
280
.10.1115/1.2899220
18.
Cengel
,
Y.
, and
Cimbala
,
J.
,
2017
,
Fluid Mechanics: Fundamentals and Applications
,
McGraw-Hill
,
New York
.
19.
Brown
,
F. T.
,
2006
,
Engineering System Dynamics: A Unified Graph-Centered Approach
, 2nd ed.,
Taylor & Francis
,
Boca Raton, FL
.
You do not currently have access to this content.