Abstract

Vehicle semi-active suspension systems can provide a satisfactory compromise of ride comfort and handling stability. With the rapid developments of damping control methodologies, ride comfort is expected to be improved in all three directions, i.e., vertical, roll, and pitch. Considering this kind of multi-objective coordinated control problem, Model Predictive Control (MPC) gains lots of attention in the recent decade. However, the MPC algorithm is expensive for real-time implementations due to its computational complexity. This paper introduces an integrated Skyhook and linear quadratic regulator (LQR) control approach, which can be easily processed on an automotive-grade microcontroller because of its concise algorithm. Meanwhile, it has great potential in attenuating vehicle body vibrations in vertical and rotational directions at the same time. Its control performances are evaluated through the co-simulation between carsim and matlab/simulink based on three different road conditions. The Buick Enclave, which is a full-size sport utility vehicle (SUV), is modeled in carsim for evaluating the control performance. The results demonstrated the control efficiency of the integrated Skyhook-LQR approach, which is even better than MPC, especially in vertical and pitch directions.

References

1.
Yang
,
W.
,
Chen
,
J.
,
Liu
,
Z.
, and
Lan
,
F.
,
2019
, “
Vibration Characteristics of Framed SUV Cab Based on Coupled Transfer Path Analysis
,”
Automot. Innovation
,
2
(
1
), pp.
26
34
.10.1007/s42154-019-00049-1
2.
Qin
,
Y.
,
Wang
,
Z.
,
Yuan
,
K.
, and
Zhang
,
Y.
,
2019
, “
Comprehensive Analysis and Optimization of Dynamic Vibration-Absorbing Structures for Electric Vehicles Driven by in-Wheel Motors
,”
Automot. Innovation
,
2
(
4
), pp.
254
262
.10.1007/s42154-019-00079-9
3.
Gokul
Prassad
,
S.
, and Malar
Mohan
,
K.
,
2019
, “
A Contemporary Adaptive Air Suspension Using LQR Control for Passenger Vehicles
,”
ISA Trans
,
93
, pp.
244
254
.10.1016/j.isatra.2019.02.031
4.
Yamamoto
,
H.
,
Nakanozo
,
H.
, and
Narukawa
,
T.
,
2021
,.
Development of a Vibration Isolator Using Air Suspensions With Slit Restrictions
Springer International Publishing
,
Cham
, Switzerland, pp.
271
277
.
5.
Cao
,
D.
,
Song
,
X.
, and
Ahmadian
,
M.
,
2011
, “
Editors' Perspectives: Road Vehicle Suspension Design, Dynamics, and Control
,”
Veh. Syst. Dyn.
,
49
(
1–2
), pp.
3
28
.10.1080/00423114.2010.532223
6.
Lu
,
Y.
,
Khajepour
,
A.
,
Liu
,
Y.
, and
Zhen
,
R.
,
2022
, “
Adaptive Cabin Suspension Systems of Commercial Vehicles: A Review of the State-of-Art and Future Trends
,”
Int. J. Heavy Veh. Syst.
,
29
(
1
), pp.
33
47
.10.1504/IJHVS.2022.123242
7.
Rustighi
,
E.
,
Elliott
,
S. J.
,
Finnveden
,
S.
,
Gulyás
,
K.
,
Mócsai
,
T.
, and
Danti
,
M.
,
2008
, “
Linear Stochastic Evaluation of Tyre Vibration Due to Tyre/Road Excitation
,”
J. Sound Vib.
,
310
(
4–5
), pp.
1112
1127
.10.1016/j.jsv.2007.08.032
8.
Mozaffari
,
A.
,
Chenouri
,
S.
,
Qin
,
Y.
, and
Khajepour
,
A.
,
2019
, “
Learning-Based Vehicle Suspension Controller Design: A Review of the State-of-the-Art and Future Research Potentials
,”
eTransportation
,
2
, p.
100024
.10.1016/j.etran.2019.100024
9.
Enrico Pellegrini
,
2012
,
Model-Based Damper Control for Semi-Active Suspension Systems
, Ph.D. thesis,
Technical University of Munich
, Germany.
10.
Nguyen
,
M. Q.
,
Canale
,
M.
,
Sename
,
O.
, and
Dugard
,
L.
,
2016
, “
A Model Predictive Control Approach for Semi-Active Suspension Control Problem of a Full Car
,” 55th Conferenceon Decision and Control (
CDC
), Las Vegas, NV, Dec. 12–14, pp.
721
726
.10.1109/CDC.2016.7798353
11.
Gohrle
,
C.
,
Schindler
,
A.
,
Wagner
,
A.
, and
Sawodny
,
O.
,
2013
, “
Model Predictive Control of Semi-Active and Active Suspension Systems With Available Road Preview
,” European Control Conference (
ECC
),, Zurich, Switzerland, July 17–19, pp.
1499
1504
.10.23919/ECC.2013.6669185
12.
Giorgetti
,
N.
,
Bemporad
,
A.
,
Tseng
,
H. E.
, and
Hrovat
,
D.
,
2006
, “
Hybrid Model Predictive Control Application Towards Optimal Semi-Active Suspension
,”
Int. J. Control
,
79
(
5
), pp.
521
533
.10.1080/00207170600593901
13.
Canale
,
M.
,
Milanese
,
M.
, and
Novara
,
C.
,
2006
, “
Semi-Active Suspension Control Using “Fast” Model-Predictive Techniques
,”
TCST
,
14
(
6
), pp.
1034
1046
.10.1109/TCST.2006.880196
14.
Cseko
,
L. H.
,
Kvasnica
,
M.
, and
Lantos
,
B.
,
2015
, “
Explicit MPC-Based RBF Neural Network Controller Design With Discrete-Time Actual Kalman Filter for Semiactive Suspension
,”
TCST
,
23
(
5
), pp.
1736
1753
.10.1109/TCST.2014.2382571
15.
Fredrik
,
K.
, and
Simon
,
S.
,
2018
,
Real-Time Nonlinear Model Predictive Control for Semi-Active Suspension With Road Preview
, Master thesis,
Chalmers University of Technology
, Sweden.
16.
Theunissen
,
J.
,
Sorniotti
,
A.
,
Gruber
,
P.
,
Fallah
,
S.
,
Ricco
,
M.
,
Kvasnica
,
M.
, and
Dhaens
,
M.
,
2020
, “
Regionless Explicit Model Predictive Control of Active Suspension Systems With Preview
,”
TIE
,
67
(
6
), pp.
4877
4888
.10.1109/TIE.2019.2926056
17.
Morato
,
M. M.
,
Nguyen
,
M. Q.
,
Sename
,
O.
, and
Dugard
,
L.
,
2019
, “
Design of a Fast Real-Time LPV Model Predictive Control System for Semi-Active Suspension Control of a Full Vehicle
,”
J. Franklin Inst.
,
356
(
3
), pp.
1196
1224
.10.1016/j.jfranklin.2018.11.016
18.
Gohrle
,
C.
,
Wagner
,
A.
,
Schindler
,
A.
, and
Sawodny
,
O.
,
2012
, “
Active Suspension Controller Using MPC Based on a Full-Car Model With Preview Information
,” American Control Conference (
ACC
),
IEEE
, Montreal, QC, Canada, June 27–29, pp.
497
502
.10.1109/ACC.2012.6314680
19.
Ferreau
,
H. J.
,
Kirches
,
C.
,
Potschka
,
A.
,
Bock
,
H. G.
, and
Diehl
,
M.
,
2014
, “
qpOASES: A Parametric Active-Set Algorithm for Quadratic Programming
,”
Math. Prog. Comp.
,
6
(
4
), pp.
327
363
.10.1007/s12532-014-0071-1
20.
Cimini
,
G.
,
Bemporad
,
A.
, and
Bernardini
,
D.
,
2017
, “
ODYS QP Solver
,” ODYS S.r.l.https://odys.it/qp
21.
Cheshmi
,
K.
,
Kaufman
,
D.
,
Kamil
,
S.
, and
Dehnavi
,
M.
,
2020
, “
NASOQ: Numerically Accurate Sparsity-Oriented QP Solver
,”
ACM Trans. Graphics
,
39
(
4
), pp.
96:1
96:17
.10.1145/3386569.3392486
22.
Stellato
,
B.
,
Banjac
,
G.
,
Goulart
,
P.
,
Bemporad
,
A.
, and
Boyd
,
S.
,
2020
, “
OSQP: An Operator Splitting Solver for Quadratic Programs
,”
Math Prog. Comp.
,
12
(
4
), pp.
637
672
.10.1007/s12532-020-00179-2
23.
Di Cairano
,
S.
, and
Kolmanovsky
,
I. V.
,
2018
, “
Real-Time Optimization and Model Predictive Control for Aerospace and Automotive Applications
,” Annual American Control Conference (
ACC
), Milwaukee, WI, June 27–29, pp.
2392
2409
.10.23919/ACC.2018.8431585
24.
Durmaz
,
B. E.
,
Kacmaz
,
B.
,
Mutlu
,
I.
, and
Soylemez
,
M. T.
,
2017
, “Implementation and Comparison of LQR-MPC on Active Suspension System. EMO,” Tenth
International Conference onElectrical and Electronics Engineering (ELECO)
, pp.
828
835
.
25.
Taghirad
,
H. D.
, and
Esmailzadeh
,
E.
,
1998
, “
Automobile Passenger Comfort Assured Through LQG/LQR Active Suspension
,”
J. Vib. Control
,
4
(
5
), pp.
603
618
.10.1177/107754639800400504
26.
Karnopp
,
D.
,
1983
, “
Active Damping in Road Vehicle Suspension Systems
,”
Veh. Syst. Dyn.
,
12
(
6
), pp.
291
311
.10.1080/00423118308968758
27.
Kashem
,
S. B. A.
,
Ektesabi
,
M.
, and
Nagarajah
,
R.
,
2012
, “
Comparison Between Different Sets of Suspension Parameters and Introduction of New Modified Skyhook Control Strategy Incorporating Varying Road Condition
,”
Veh. Syst. Dyn.
,
50
(
7
), pp.
1173
1190
.10.1080/00423114.2012.659743
28.
Hong
,
K.
,
Sohn
,
H.
, and
Hedrick
,
J. K.
,
2002
, “
Modified Skyhook Control of Semi-Active Suspensions: A New Model, Gain Scheduling, and Hardware-in-the-Loop Tuning
,”
ASME J. Dyn. Sys., Meas., Control
,
124
(
1
), pp.
158
167
.10.1115/1.1434265
29.
International Organization for Standardization
,
2011
, “
ISO 8855:2011 Road Vehicles — Vehicle Dynamics and Road-Holding Ability—Vocabulary
,” International Organization for Standardization, Geneva, Switzerland.
30.
Goodarzi
,
A.
, and
Khajepour
,
A.
,
2017
, “
Vehicle Suspension System Technology and Design
,” Morgan Claypool, San Rafael, CA.
31.
Friedland
,
B.
,
2005
,
Control System Design: An Introduction to State-Space Methods
,
Dover Publications, Inc
.,
Mineola, New York
.
32.
Tóth
,
R.
,
Felici
,
F.
,
Heuberger
,
P. S. C.
, and
Van den Hof
,
P. M. J.
,
2008
, “
Crucial Aspects of Zero-Order Hold LPV State-Space System Discretization
,”
IFAC Proc. Vol.
,
41
(
2
), pp.
4952
4957
.10.3182/20080706-5-KR-1001.00832
33.
Ferreau
,
H. J.
,
Bock
,
H. G.
, and
Diehl
,
M.
,
2008
, “
An Online Active Set Strategy to Overcome the Limitations of Explicit MPC. International Journal of Robust and Nonlinear Control
,”
Int. J. Robust Nonlinear Control
,
18
(
8
), pp.
816
830
.10.1002/rnc.1251
34.
Qin
,
Y.
,
Zhao
,
Z.
,
Wang
,
Z.
, and
Li
,
G.
,
2021
, “
Study of Longitudinal–Vertical Dynamics for in-Wheel Motor-Driven Electric Vehicles
,”
Automot. Innovation
,
4
(
2
), pp.
227
237
.10.1007/s42154-021-00141-5
35.
Lavretsky
,
E.
, and
Wise
,
K. A.
,
2013
,
Robust and Adaptive Control With Aerospace Applications
,
Springer
,
London
.
36.
Laub
,
A.
,
1979
, “
A Schur Method for Solving Algebraic Riccati Equations
,”
TAC
,
24
(
6
), pp.
913
921
.10.1109/TAC.1979.1102178
37.
British Standards,
1987
, “
BS 6841:1987 Guide to Measurement and Evaluation of Human Exposure to Whole-Body Mechanical Vibration and Repeated Shock
,”
British
Standards Institution, London.https://www.thenbs.com/PublicationIndex/documents/details?Pub=BSI&DocID=286794
38.
International Organization for Standardization
,
1997
, “
ISO 2631-1:1997 Mechanical Vibration and Shock — Evaluation of Human Exposure to Whole-Body Vibration — Part 1: General Requirements
,”
International Organization of Standards
, Geneva, Switzerland.https://www.iso.org/standard/7612.html
You do not currently have access to this content.