Abstract

This paper is concerned with energy efficient operation of an integral thermal management system (ITMS) for electric vehicles using a nonlinear model predictive control (MPC). Driven by a heat pump (HP), this ITMS can handle battery thermal management (BTM) while serving the need for cabin cooling or heating need. The objectives of the ITMS MPC control strategy include minimization of power consumption and achieving temperature setpoint regulation for the battery and cabin space based on predictive information of traction power and cabin thermal load. The control design is facilitated by a gray‐box modeling framework, in which the nonlinear dynamics of HP subsystem are characterized with a data-driven Koopman subspace model, while the BTM subsystem dynamic is a bilinear physics-based model. The computational efficiency of the proposed MPC framework is improved with two aspects of convexification for the underlying receding-horizon constrained optimization problem: the Koopman-operator lifting and the McCormick envelopes implemented for handling the bilinear dynamics. The proposed control method is evaluated with simulation study, by developing a Modelica-Python cosimulation platform via the functional mockup interface (FMI), where the electric vehicle (EV)-ITMS plant is modeled in Modelica with Dymola and the MPC design is implemented in Python. By benchmarking against a recurrent-neural-networks (RNN) model based nonlinear MPC, the simulation results validate the effectiveness and improved computational efficiency of the proposed method.

References

1.
Bottiglione
,
F.
,
De Pinto
,
S.
,
Mantriota
,
G.
, and
Sorniotti
,
A.
,
2014
, “
Energy Consumption of a Battery Electric Vehicle With Infinitely Variable Transmission
,”
Energies
,
7
(
12
), pp.
8317
337
.10.3390/en7128317
2.
Brown
,
S.
,
Pyke
,
D.
, and
Steenhof
,
P.
,
2010
, “
Electric Vehicles: The Role and Importance of Standards in an Emerging Market
,”
Energy Policy
,
38
(
7
), pp.
3797
806
.10.1016/j.enpol.2010.02.059
3.
Chiu
,
C.-C.
,
Tsai
,
N.-C.
, and
Lin
,
C.-C.
,
2014
, “
Near-Optimal Order-Reduced Control for a/C (Air-Conditioning) System of EVS (Electric Vehicles)
,”
Energy
,
66
, pp.
342
353
.10.1016/j.energy.2014.01.029
4.
Dvorak
,
D.
,
Basciotti
,
D.
, and
Gellai
,
I.
,
2020
, “
Demand-Based Control Design for Efficient Heat Pump Operation of Electric Vehicles
,”
Energies
,
13
(
20
), p.
5440
.10.3390/en13205440
5.
Cvok
,
I.
,
Škugor
,
B.
, and
Deur
,
J.
,
2020
, “
Control Trajectory Optimization and Optimal Control of an Electric Vehicle HVAC System for Favourable Efficiency and Thermal Comfort
,”
Optim. Eng.
,
22
(
1
), pp.
83
102
.10.1007/s11081-020-09515-w
6.
He
,
H.
,
Yan
,
M.
,
Sun
,
C.
,
Peng
,
J.
,
Li
,
M.
, and
Jia
,
H.
,
2018
, “
Predictive Air-Conditioner Control for Electric Buses With Passenger Amount Variation Forecast
,”
Appl. Energy
,
227
, pp.
249
261
.10.1016/j.apenergy.2017.08.181
7.
Na
,
S.-I.
,
Chung
,
Y.
, and
Kim
,
M. S.
,
2021
, “
Performance Analysis of an Electric Vehicle Heat Pump System With a Desiccant Dehumidifier
,”
Energy Convers. Manage.
,
236
, p.
114083
.10.1016/j.enconman.2021.114083
8.
Schaut
,
S.
, and
Sawodny
,
O.
,
2020
, “
Thermal Management for the Cabin of a Battery Electric Vehicle Considering Passengers' Comfort
,”
IEEE Trans. Ctrl. Sys. Technol.
,
28
(
4
), pp.
1476
1492
.10.1109/TCST.2019.2914888
9.
Glos
,
J.
,
Otava
,
L.
, and
Vaclavek
,
P.
,
2021
, “
Non-Linear Model Predictive Control of Cabin Temperature and Air Quality in Fully Electric Vehicles
,”
IEEE Trans. Veh. Technol.
,
70
(
2
), pp.
1216
1229
.10.1109/TVT.2021.3054170
10.
Medina
,
R.
,
Parfant
,
Z.
,
Pham
,
T.
, and
Wilkins
,
S.
,
2020
, “
Multi-Layer Predictive Energy Management System for Battery Electric Vehicles
,”
IFAC-PapersOnLine
,
53
(
2
), pp.
14167
14172
.10.1016/j.ifacol.2020.12.1035
11.
Rong
,
D.
,
Yang
,
B.
, and
Chen
,
C.
,
2019
, “
Model Predictive Climate Control of Electric Vehicles for Improved Battery Lifetime
,” Chinese Automation Congress (
CAC
), Hangzhou, China, Nov. 22–24, pp.
5457
5462
.10.1109/CAC48633.2019.8996173
12.
Wang
,
H.
,
Kolmanovsky
,
I.
,
Amini
,
M. R.
, and
Sun
,
J.
,
2018
, “
Model Predictive Climate Control of Connected and Automated Vehicles for Improved Energy Efficiency
,” Annual American Control Conference (
ACC
), Milwaukee, WI, June 27–29, pp.
828
833
.10.23919/ACC.2018.8431051
13.
Masoudi
,
Y.
,
Mozaffari
,
A.
, and
Azad
,
N. L.
,
2015
, “
Battery Thermal Management of Electric Vehicles: An Optimal Control Approach
,”
ASME
Paper No. DSCC2015-9723.10.1115/DSCC2015-9723
14.
Cen
,
J.
, and
Jiang
,
F.
,
2020
, “
Li-Ion Power Battery Temperature Control by a Battery Thermal Management and Vehicle Cabin Air Conditioning Integrated System
,”
Energy Sustainable Develop.
,
57
, pp.
141
148
.10.1016/j.esd.2020.06.004
15.
Yao
,
M.
,
Gan
,
Y.
,
Liang
,
J.
,
Dong
,
D.
,
Ma
,
L.
,
Liu
,
J.
,
Luo
,
Q.
, and
Li
,
Y.
,
2021
, “
Performance Simulation of a Heat Pipe and Refrigerant-Based Lithium-Ion Battery Thermal Management System Coupled With Electric Vehicle Air-Conditioning
,”
Appl. Therm. Eng.
,
191
, p.
116878
.10.1016/j.applthermaleng.2021.116878
16.
Ma
,
Y.
,
Ding
,
H.
,
Liu
,
Y.
, and
Gao
,
J.
,
2021
, “
Battery Thermal Management of Intelligent-Connected Electric Vehicles at Low Temperature Based on NMPC
,”
Energy
,
244
(
15
), p.
122571
.10.1016/j.energy.2021.122571
17.
Zhang
,
K.
,
Li
,
M.
,
Yang
,
C.
,
Shao
,
Z.
, and
Wang
,
L.
,
2019
, “
Exergy Analysis of Electric Vehicle Heat Pump Air Conditioning System With Battery Thermal Management System
,”
J. Therm. Sci.
,
29
(
2
), pp.
408
422
.10.1007/s11630-019-1128-2
18.
Guo
,
J.
, and
Jiang
,
F.
,
2021
, “
A Novel Electric Vehicle Thermal Management System Based on Cooling and Heating of Batteries by Refrigerant
,”
Energy Convers. Manage.
,
237
, p.
114145
.10.1016/j.enconman.2021.114145
19.
Han
,
B.
,
Liu
,
F.
,
Li
,
M.
,
Guo
,
J.
, and
Xu
,
Y.
,
2021
, “
Research on Electric Vehicle Thermal Management System With Coupled Temperature Regulation Between Crew Cabin and Power Battery Pack
,”
Proc. Inst. Mech. Eng., Part D
,
235
(
10–11
), pp.
2740
2752
.10.1177/0954407021996581
20.
Min
,
H.
,
Zhang
,
Z.
,
Sun
,
W.
,
Min
,
Z.
,
Yu
,
Y.
, and
Wang
,
B.
,
2020
, “
A Thermal Management System Control Strategy for Electric Vehicles Under Low-Temperature Driving Conditions Considering Battery Lifetime
,”
Appl. Therm. Eng.
,
181
, p.
115944
.10.1016/j.applthermaleng.2020.115944
21.
Tian
,
Z.
, and
Gu
,
B.
,
2019
, “
Analyses of an Integrated Thermal Management System for Electric Vehicles
,”
Int. J. Energy Res.
,
43
(
11
), pp.
5788
5802
.10.1002/er.4679
22.
Tang
,
X.
,
Guo
,
Q.
,
Li
,
M.
,
Wei
,
C.
,
Pan
,
Z.
, and
Wang
,
Y.
,
2021
, “
Performance Analysis on Liquid-Cooled Battery Thermal Management for Electric Vehicles Based on Machine Learning
,”
J. Power Sources
,
494
, p.
229727
.10.1016/j.jpowsour.2021.229727
23.
Shelly
,
T. J.
,
Weibel
,
J. A.
,
Ziviani
,
D.
, and
Groll
,
E. A.
,
2021
, “
Comparative Analysis of Battery Electric Vehicle Thermal Management Systems Under Long-Range Drive Cycles
,”
Appl. Therm. Eng.
,
198
, p.
117506
.10.1016/j.applthermaleng.2021.117506
24.
Shen
,
M.
, and
Gao
,
Q.
,
2020
, “
Simulation and Analysis of Dual-Evaporator Refrigeration System for Electric Vehicles
,”
Automot. Innovation
,
3
(
4
), pp.
347
355
.10.1007/s42154-020-00115-z
25.
Jeffs
,
J.
,
Dinh
,
T. Q.
,
Widanage
,
W. D.
,
McGordon
,
A.
, and
Picarelli
,
A.
,
2020
, “
Optimisation of Direct Battery Thermal Management for EVs Operating in Low-Temperature Climates
,”
Energies
,
13
(
22
), p.
5980
.10.3390/en13225980
26.
Liu
,
Y.
, and
Zhang
,
J.
,
2021
, “
A Model Predictive Control-Based Energy Management Strategy Considering Electric Vehicle Battery Thermal and Cabin Climate Control
,”
ASME
Paper No. DETC2020-22318.10.1115/DETC2020-22318
27.
Amini
,
M. R.
,
Wang
,
H.
,
Gong
,
X.
,
Liao-McPherson
,
D.
,
Kolmanovsky
,
I.
, and
Sun
,
J.
,
2020
, “
Cabin and Battery Thermal Management of Connected and Automated Hevs for Improved Energy Efficiency Using Hierarchical Model Predictive Control
,”
IEEE Trans. Control Syst. Technol.
,
28
(
5
), pp.
1711
1726
.10.1109/TCST.2019.2923792
28.
Zhao
,
S.
, and
Mi
,
C. C.
,
2021
, “
A Two-Stage Real-Time Optimized EV Battery Cooling Control Based on Hierarchical and Iterative Dynamic Programming and MPC
,”
IEEE Trans. Intell. Transp. Syst.
,
23
(
8
), pp.
11677
11687
.10.1109/TITS.2021.3106253
29.
Brunton
,
S. L.
,
Proctor
,
J. L.
, and
Kutz
,
J. N.
,
2016
, “
Discovering Governing Equations From Data by Sparse Identification of Nonlinear Dynamical Systems
,”
Proc. Natl. Acad. Sci. USA
,
113
(
15
), pp.
3932
3937
.10.1073/pnas.1517384113
30.
Dassault Systèmes
2019
, “Dymola,” accessed Oct. 2, 2022, https://www.3ds.com/products-services/catia/products/dymola/
31.
TIL-Thermo GmbH 3.5.1
(
2018
), TIL Suite. accessed Oct. 2, 2022, https://www.tlk-thermo.com/index.php/en/software-products/overview/38-til-suite
32.
Sven
,
F.
,
2004
,
Vergleichende Untersuchung Von Co2-Verdichtern in Hinblick Auf Den Einsatz in Mobilen Anwendungen
,
Cuvillier
,
Goettingen
.
33.
Bernardi
,
D.
,
Pawlikowski
,
E.
, and
Newman
,
J.
,
1985
, “
A General Energy Balance for Battery Systems
,”
J. Electrochem. Soc.
,
132
(
1
), pp.
5
12
.10.1149/1.2113792
34.
Proctor
,
J. L.
,
Brunton
,
S. L.
, and
Kutz
,
J. N.
,
2018
, “
Generalizing Koopman Theory to Allow for Inputs and Control
,”
SIAM J. Appl. Dyn. Syst.
,
17
(
1
), pp.
909
930
.10.1137/16M1062296
35.
Nieto
,
N.
,
Díaz
,
L.
,
Gastelurrutia
,
J.
,
Alava
,
I.
,
Blanco
,
F.
,
Carlos Ramos
,
J.
, and
Rivas
,
A.
,
2012
, “
Thermal Modeling of Large Format Lithium-Ion Cells
,”
J. Electrochem. Soc.
,
160
(
2
), p. A212.10.1149/2.042302jes
36.
Narasingam
,
A.
, and
Kwon
,
J. S.-I.
,
2020
, “
Application of Koopman Operator for Model-Based Control of Fracture Propagation and Proppant Transport in Hydraulic Fracturing Operation
,”
J. Process Control
,
91
, pp.
25
36
.10.1016/j.jprocont.2020.05.003
37.
Kaiser
,
E.
,
Kutz
,
J. N.
, and
Brunton
,
S. L.
,
2021
, “
Data-Driven Discovery of Koopman Eigenfunctions for Control
,”
Mach. Learn.: Sci. Technol.
,
2
(
3
), p.
035023
.10.1088/2632-2153/abf0f5
38.
Korda
,
M.
, and
Mezić
,
I.
,
2018
, “
Linear Predictors for Nonlinear Dynamical Systems: Koopman Operator Meets Model Predictive Control
,”
Automatica
,
93
, pp.
149
160
.10.1016/j.automatica.2018.03.046
39.
Brunton
,
S. L.
,
Proctor
,
J. L.
, and
Kutz
,
J. N.
,
2016
, “
Sparse Identification of Nonlinear Dynamics With Control (SINDYc)
,”
IFAC-PapersOnLine
,
49
(
18
), pp.
710
715
.10.1016/j.ifacol.2016.10.249
40.
Bazinski
,
S. J.
, and
Wang
,
X.
,
2015
, “
Experimental Study on the Influence of Temperature and State-of-Charge on the Thermophysical Properties of an LFP Pouch Cell
,”
J. Power Sources
,
293
, pp.
283
291
.10.1016/j.jpowsour.2015.05.084
41.
Williams
,
M. O.
,
Kevrekidis
,
I. G.
, and
Rowley
,
C. W.
,
2015
, “
A Data–Driven Approximation of the Koopman Operator: Extending Dynamic Mode Decomposition
,”
J. Nonlinear Sci.
,
25
(
6
), pp.
1307
1346
.10.1007/s00332-015-9258-5
42.
Tibshirani
,
R.
,
2011
, “
Regression Shrinkage and Selection Via the Lasso: A Retrospective
,”
J. R. Stat. Soc. B (Stat. Methodol.)
,
73
(
3
), pp.
273
282
.10.1111/j.1467-9868.2011.00771.x
43.
Akaike
,
H.
,
1974
, “
A New Look at the Statistical Model Identification
,”
Springer Series in Statistics
,
Springer
,
New York, NY
, pp.
215
222
.
44.
Golub
,
G. H.
,
Heath
,
M.
, and
Wahba
,
G.
,
1979
, “
Generalized Cross-Validation as a Method for Choosing a Good Ridge Parameter
,”
Technometrics
,
21
(
2
), pp.
215
223
.10.1080/00401706.1979.10489751
45.
Schwarz
,
G.
,
1978
, “
Estimating the Dimension of a Model
,”
Ann. Stat.
,
6
(
2
), pp. 461–464.10.1214/aos/1176344136
46.
Spiegelhalter
,
D. J.
,
Best
,
N. G.
,
Carlin
,
B. P.
, and
van der Linde
,
A.
,
2002
, “
Bayesian Measures of Model Complexity and Fit
,”
J. R. Stat. Soc.: Ser. B (Stat. Methodology)
,
64
(
4
), pp.
583
639
.10.1111/1467-9868.00353
47.
Hurvich
,
C. M.
, and
Tsai
,
C-L.
,
1989
, “
Regression and Time Series Model Selection in Small Samples
,”
Biometrika
,
76
(
2
), pp.
297
307
.10.1093/biomet/76.2.297
48.
Mangan
,
N. M.
,
Askham
,
T.
,
Brunton
,
S. L.
,
Kutz
,
J. N.
, and
Proctor
,
J. L.
,
2019
, “
Model Selection for Hybrid Dynamical Systems Via Sparse Regression
,”
Proc. R. Soc. A: Math., Phys. Eng. Sci.
,
475
(
2223
), p.
20180534
.10.1098/rspa.2018.0534
49.
Qin
,
S. J.
, and
Badgwell
,
T. A.
,
2000
, “An Overview of Nonlinear Model Predictive Control Applications,” Nonlinear Model Predictive Control, Progress in Systems and Control Theory, Vol. 26, Birkhauser Verlag, Basel, Switzerland, pp.
369
392
.
50.
Thakur
,
A. K.
,
Prabakaran
,
R.
,
Elkadeem
,
M. R.
,
Sharshir
,
S. W.
,
Arıcı
,
M.
,
Wang
,
C.
,
Zhao
,
W.
,
et al.
,
2020
, “
A State-of-the-Art Review and Future Viewpoint on Advance Cooling Techniques for Lithium–Ion Battery System of Electric Vehicles
,”
J. Energy Storage
,
32
, p.
101771
.10.1016/j.est.2020.101771
51.
Rawlings
,
J. B.
,
2000
, “
Tutorial Overview of Model Predictive Control
,”
IEEE Ctrl. Sys. Mag.
,
20
(
3
), pp.
38
52
.10.1109/37.845037
52.
Morari
,
M.
, and
Lee
,
J. H.
,
1999
, “
Model Predictive Control: Past, Present and Future
,”
Comput. Chem. Eng.
,
23
(
4–5
), pp.
667
682
.10.1016/S0098-1354(98)00301-9
53.
McCormick
,
G. P.
,
1976
, “
Computability of Global Solutions to Factorable Nonconvex Programs: Part I — Convex Underestimating Problems
,”
Math. Prog.
,
10
(
1
), pp.
147
175
.10.1007/BF01580665
54.
Boyd
,
S.
,
2010
, “
Distributed Optimization and Statistical Learning Via the Alternating Direction Method of Multipliers
,”
Found. Trends Mach. Learn.
,
3
(
1
), pp.
1
122
.10.1561/2200000016
55.
Stellato
,
B.
,
Banjac
,
G.
,
Goulart
,
P.
,
Bemporad
,
A.
, and
Boyd
,
S.
,
2020
, “
OSQP: An Operator Splitting Solver for Quadratic Programs
,”
Math. Prog. Comp.
,
12
(
4
), pp.
637
672
.10.1007/s12532-020-00179-2
56.
Sommer
,
T.
,
2020
, “FMPy,” accessed Mar. 24, 2023, https://github.com/CATIA-Systems/FMPy
57.
Agrawal
,
A.
,
Verschueren
,
R.
,
Diamond
,
S.
, and
Boyd
,
S.
,
2018
, “
A Rewriting System for Convex Optimization Problems
,”
J. Controlled Res.
,
5
(
1
), pp.
42
60
.10.1080/23307706.2017.1397554
58.
Diamond
,
S.
, and
Boyd
,
S.
,
2016
, “
CVXPY: A Python-Embedded Modeling Language for Covex Optimization
,”
J. Mach. Learn. Res.
,
17
(
83
), pp.
1
5
.10.5555/2946645.3007036
59.
D. F.
,
Pereira
,
F.
,
D C.
,
Lopes
., and
E. H.
,
Watanabe
,
2021
, “
Nonlinear Model Predictive Control for the Energy Management of Fuel Cell Hybrid Electric Vehicles in Real Time
,”
IEEE Trans. Ind. Electron.
,
68
(
4
), pp.
3213
3223
.10.1109/TIE.2020.2979528
60.
Eini
,
R.
, and
Abdelwahed
,
S.
,
2020
, “
A Neural Network-Based Model Predictive Control Approach for Buildings Comfort Management
,” IEEE International Smart Cities Conference (
ISC2
), Piscataway, NJ, Sept. 28–Oct. 1.10.1109/ISC251055.2020.9239051
61.
Afram
,
A.
,
Janabi-Sharifi
,
F.
,
Fung
,
A. S.
, and
Raahemifar
,
K.
,
2017
, “
Artificial Neural Network (ANN) Based Model Predictvaive Control (MPC) and Optimization of HVAC Systems: A State-of-the-Art Review and Case Study of a Residential HVAC System
,”
Energy Build.
,
141
, pp.
96
113
.10.1016/j.enbuild.2017.02.012
62.
Wächter
,
A.
, and
Biegler
,
L.
,
2006
, “
On the Implementation of an Interior-Point Filter Line-Search Algorithm for Large-Scale Nonlinear Programming
,”
Math. Program.
,
106
, pp.
25
57
.10.1007/s10107-004-0559-y
63.
Pan
,
C.
, and
Li
,
Y.
,
2022
, “
Nonlinear Model Predictive Control for Integrated Thermal Management of Electric Vehicle Battery and Cabin Environment
,”
19th Intertnational Refrigeration & Air Conditioning Conference, Purdue
, July 10–14, pp.
2484
2484
.
64.
Beal
,
L. D. R.
,
Hill
,
D.
,
Martin
,
R. A.
, and
Hedengren
,
J. D.
,
2018
, “
GEKKO Optimization Suite
,”
Processes
,
6
(
8
), p.
106
.10.3390/pr6080106
65.
Brigham Young University PRISM Group
, GEKKO (
2021
), “BYU-PRISM/GEKKO,” accessed Oct. 2, 2022, https://github.com/BYU-PRISM/GEKKO
You do not currently have access to this content.