Abstract

Low-fidelity engineering-level dynamic models are commonly employed while designing uncrewed aircraft flight controllers due to their rapid development and cost-effectiveness. However, during adverse conditions, or complex path-following missions, the uncertainties in low-fidelity models often result in suboptimal controller performance. Aircraft system identification techniques offer alternative methods for finding higher fidelity dynamic models but can be restrictive in flight test requirements and procedures. This challenge is exacerbated when there is no pilot onboard. This work introduces data-driven machine learning (ML) to enhance the fidelity of aircraft dynamic models, overcoming the limitations of conventional system identification. A large dataset from twelve previous flights is utilized within an ML framework to create a long short-term memory (LSTM) model for the aircraft's lateral-directional dynamics. A deep reinforcement learning (RL)-based flight controller is developed using a randomized dynamic domain created using the LSTM and physics-based models to quantify the impact of LSTM dynamic model improvements on controller performance. The RL controller performance is compared to other modern controller techniques in four actual flight tests in the presence of exogenous disturbances and noise, assessing its tracking capabilities and its ability to reject disturbances. The RL controller with a randomized dynamic domain outperforms an RL controller trained using only the engineering-level dynamic model, a linear quadratic regulator controller, and an L1 adaptive controller. Notably, it demonstrated up to 72% improvements in lateral tracking when the aircraft had to follow challenging paths and during intentional adverse onboard conditions.

References

1.
Drela
,
M.
, and
Youngren
,
H.
,
2020
, Athena Vortex Lattice, Massachusetts Institute of Technology, Cambridge, MA, accessed July 1, 2024, https://web.mit.edu/drela/Public/web/avl/
2.
Design, Analysis and Research Corporation
,
2018
, Advanced Aircraft Analysis, Lawrence, KS, accessed July 1, 2024, https://www.darcorp.com/advanced-aircraft-analysis-software/
3.
Benyamen
,
H.
,
Mays
,
B. S.
,
Chowdhury
,
M.
,
Keshmiri
,
S.
, and
Ewing
,
M. S.
,
2023
, “
Analysis of Aircraft Simulation Validity in Different Flight Conditions
,” 2023 International Conference on Unmanned Aircraft Systems (
ICUAS
),
Warsaw, Poland, June 6–9, pp.
129
136
.10.1109/ICUAS57906.2023.10156586
4.
Jategaonkar
,
R. V.
,
2015
,
Flight Vehicle System Identification: A Time-Domain Methodology
, 2nd ed.,
American Institute of Aeronautics and Astronautics
, Reston, VA.
5.
Morelli
,
E. A.
, and
Klein
,
V.
,
2016
,
Aircraft System Identification: Theory and Practice
,
Sunflyte Enterprises
,
Williamsburg, VA
, Vol.
2
.
6.
Tischler
,
M. B.
, and
Remple
,
R. K.
,
2012
,
Aircraft and Rotorcraft System Identification: Engineering Methods With Flight Test Examples
, 2nd ed.,
American Institute of Aeronautics and Astronautics
, Reston, VA.
7.
Sparbanie
,
S. M.
,
2008
, “
Modeling and Identification of Unsteady Airwake Disturbances on Rotorcraft
,”
M.S. thesis
, The Pennsylvania State University, University Park, PA.https://etda.libraries.psu.edu/catalog/9116
8.
Hageman
,
J. J.
,
Smith
,
M. S.
, and
Stachowiak
,
S.
,
2003
, “
Integration of Online Parameter Identification and Neural Network for in-Flight Adaptive Control
,” NASA, Report No.
NASA/TM-2003-212028
.https://ntrs.nasa.gov/api/citations/20040000923/downloads/20040000923.pdf
9.
Dhayalan
,
R.
,
Saderla
,
S.
, and
Ghosh
,
A. K.
,
2018
, “
Parameter Estimation of UAV From Flight Data Using Neural Network
,”
Aircr. Eng. Aerosp. Technol.
,
90
(
2
), pp.
302
311
.10.1108/AEAT-03-2016-0050
10.
Benyamen
,
H.
,
2019
, “
Stability and Control Derivatives Identification for an Unmanned Aerial Vehicle With Low Cost Sensors Using an Extended Kalman Filter Algorithm
,” M.S. thesis,
University of Kansas
,
Lawrence, KS
.
11.
Garcia
,
G.
, and
Keshmiri
,
S.
,
2012
, “
Online Artificial Neural Network Model Based Nonlinear Model Predictive Controller for the Meridian UAS
,”
AIAA
Paper No. 2012-4984.10.2514/6.2012-4984
12.
Roudbari
,
A.
, and
Saghafi
,
F.
,
2016
, “
Generalization of Ann-Based Aircraft Dynamics Identification Techniques Into the Entire Flight Envelope
,”
IEEE Trans. Aerosp. Electron. Syst.
,
52
(
4
), pp.
1866
1880
.10.1109/TAES.2016.140693
13.
Bai
,
X.
,
Guan
,
J.
, and
Wang
,
H.
,
2019
,
A Model-Based Reinforcement Learning With Adversarial Training for Online Recommendation
,
Curran Associates Inc
.,
Red Hook, NY
, pp.
10735
10746
.
14.
Chalvatzaki
,
G.
,
Papageorgiou
,
X. S.
,
Maragos
,
P.
, and
Tzafestas
,
C. S.
,
2019
, “
Learn to Adapt to Human Walking: A Model-Based Reinforcement Learning Approach for a Robotic Assistant Rollator
,”
IEEE Rob. Autom. Lett.
,
4
(
4
), pp.
3774
3781
.10.1109/LRA.2019.2929996
15.
Soleyman
,
S.
,
Chen
,
Y.
,
Fadaie
,
J.
,
Hung
,
F.
,
Khosla
,
D.
,
Moffit
,
S.
,
Roach
,
S.
, and
Tullock
,
C.
,
2022
, “
Predictive Modeling of Aircraft Dynamics Using Neural Networks
,”
SAE Int. J. Aerosp.
,
15
(
2
), pp.
159
170
.10.4271/01-15-02-0010
16.
Wu
,
P.
,
Escontrela
,
A.
,
Hafner
,
D.
,
Abbeel
,
P.
, and
Goldberg
,
K.
,
2023
, “
DayDreamer: World Models for Physical Robot Learning
,” 6th Conference on Robot Learning (
CoRL
), Auckland, New Zealand, Dec. 14–18, pp.
2226
2240
.https://proceedings.mlr.press/v205/wu23c/wu23c.pdf
17.
Zhu
,
X.
,
Liang
,
Y.
,
Sun
,
H.
,
Wang
,
X.
, and
Ren
,
B.
,
2022
, “
Robot Obstacle Avoidance System Using Deep Reinforcement Learning
,”
Ind. Robot
,
49
(
2
), pp.
301
310
.10.1108/IR-06-2021-0127
18.
Kim
,
M.
,
Seo
,
J.
,
Lee
,
M.
, and
Choi
,
J.
,
2021
, “
Vision-Based Uncertainty-Aware Lane Keeping Strategy Using Deep Reinforcement Learning
,”
ASME J. Dyn. Syst., Meas., Control
,
143
(
8
), p.
084503
.10.1115/1.4050396
19.
Manring
,
L. H.
, and
Mann
,
B. P.
,
2022
, “
Modeling and Reinforcement Learning Control of an Autonomous Vehicle to Get Unstuck From a Ditch
,”
ASME J. Auton. Veh. Syst.
,
2
(
1
), p.
011003
.10.1115/1.4054499
20.
Bekar
,
C.
,
Yuksek
,
B.
, and
Inalhan
,
G.
,
2020
, “
High Fidelity Progressive Reinforcement Learning for Agile Maneuvering UAVs
,”
AIAA
Paper No. 2020-0898.10.2514/6.2020-0898
21.
Torres
,
E.
,
Xu
,
L.
, and
Sardarmehni
,
T.
,
2022
, “
Using Actor-Critic Reinforcement Learning for Control and Flight Formation of Quadrotors
,”
ASME
Paper No. IMECE2022-97224.10.1115/IMECE2022-97224
22.
Koch
,
W.
,
Mancuso
,
R.
,
West
,
R.
, and
Bestavros
,
A.
,
2019
, “
Reinforcement Learning for UAV Attitude Control
,”
ACM Trans. Cyber-Phys. Syst.
,
3
(
2
), pp.
1
21
.10.1145/3301273
23.
Lee
,
B.
,
Saj
,
V.
,
Benedict
,
M.
, and
Kalathil
,
D.
,
2021
, “
A Deep Reinforcement Learning Control Strategy for Vision-Based Ship Landing of Vertical Flight Aircraft
,”
AIAA
Paper No. 2021-3218.10.2514/6.2021-3218
24.
Ferrari
,
S.
, and
Stengel
,
R. F.
,
2004
, “
Online Adaptive Critic Flight Control
,”
J. Guid., Control, Dyn.
,
27
(
5
), pp.
777
786
.10.2514/1.12597
25.
Lee
,
J. H.
, and
Van Kampen
,
E.-J.
,
2021
, “
Online Reinforcement Learning for Fixed-Wing Aircraft Longitudinal Control
,”
AIAA
Paper No. 2021-0392.10.2514/6.2021-0392
26.
Dally
,
K.
, and
Van Kampen
,
E.-J.
,
2022
, “
Soft Actor-Critic Deep Reinforcement Learning for Fault Tolerant Flight Control
,”
AIAA
Paper No. 2022-2078.10.2514/6.2022-2078
27.
Völker
,
W.
,
Li
,
Y.
, and
Kampen
,
E.-J. V.
,
2023
, “
Twin-Delayed Deep Deterministic Policy Gradient for Altitude Control of a Flying-Wing Aircraft With an Uncertain Aerodynamic Model
,”
AIAA
Paper No. 2023–2678.10.2514/6.2023-2678
28.
Clarke
,
S. G.
, and
Hwang
,
I.
,
2020
, “
Deep Reinforcement Learning Control for Aerobatic Maneuvering of Agile Fixed-Wing Aircraft
,”
AIAA
Paper No. 2020-0136.10.2514/6.2020-0136
29.
Hein
,
F.
,
Notter
,
S.
, and
Fichter
,
W.
,
2023
, “
Sim-to-Real Transfer of a Deep Reinforcement Learning Approach for Active Stall Protection
,”
AIAA
Paper No. 2023-2536.10.2514/6.2023-2536
30.
Fletcher
,
L. J.
,
Clarke
,
R. J.
,
Richardson
,
T. S.
, and
Hansen
,
M.
,
2022
, “
Integrating Throttle Into a Reinforcement Learning Controller for a Perched Landing of a Variable Sweep Wing UAV
,”
AIAA
Paper No. 2022-1288.10.2514/6.2022-1288
31.
Shukla
,
D.
,
Lal
,
R.
,
Hauptman
,
D.
,
Keshmiri
,
S. S.
,
Prabhakar
,
P.
, and
Beckage
,
N.
,
2020
, “
Flight Test Validation of a Safety-Critical Neural Network Based Longitudinal Controller for a Fixed-Wing UAS
,”
AIAA
Paper No. 2020-3093.10.2514/6.2020-3093
32.
Benyamen
,
H.
,
Chowdhury
,
M.
, and
Keshmiri
,
S. S.
,
2023
, “
Reinforcement Learning Based Aircraft Controller Enhanced By Gaussian Process Trim Finding
,”
ASME Lett. Dyn. Syst. Control
,
3
(
3
), p.
031002
.10.1115/1.4063605
33.
Chowdhury
,
M.
, and
Keshmiri
,
S.
,
2022
, “
Design and Flight Test Validation of an AI-Based Longitudinal Flight Controller for Fixed-Wing UASs
,” 2022 IEEE Aerospace Conference (
AERO
),
Big Sky, MT, March 5–12, pp.
1
12
.10.1109/AERO53065.2022.9843777
34.
Chowdhury
,
M.
, and
Keshmiri
,
S.
,
2024
, “
Interchangeable Reinforcement-Learning Flight Controller for Fixed-Wing Uass
,”
IEEE Trans. Aerosp. Electron. Syst.
,
60
(
2
), pp.
2305
2318
.10.1109/TAES.2024.3351608
35.
Bøhn
,
E.
,
Coates
,
E. M.
,
Reinhardt
,
D.
, and
Johansen
,
T. A.
,
2024
, “
Data-Efficient Deep Reinforcement Learning for Attitude Control of Fixed-Wing Uavs: Field Experiments
,”
IEEE Trans. Neural Networks Learn. Syst.
,
35
(
3
), pp.
3168
3180
.10.1109/TNNLS.2023.3263430
36.
Jakobi
,
N.
,
Husbands
,
P.
, and
Harvey
,
I.
,
1995
, “
Noise and the Reality Gap: The Use of Simulation in Evolutionary Robotics
,”
Advances in Artificial Life: Third European Conference on Artificial Life, Granada
,
Spain
,
June 4–6
, pp.
704
720
.10.1007/3-540-59496-5_337
37.
Tobin
,
J.
,
Fong
,
R.
,
Ray
,
A.
,
Schneider
,
J.
,
Zaremba
,
W.
, and
Abbeel
,
P.
,
2017
, “
Domain Randomization for Transferring Deep Neural Networks From Simulation to the Real World
,” 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (
IROS
),
Vancouver, BC, Canada, Sept. 24–28, pp.
23
30
.10.1109/IROS.2017.8202133
38.
Peng
,
X. B.
,
Andrychowicz
,
M.
,
Zaremba
,
W.
, and
Abbeel
,
P.
,
2018
, “
Sim-to-Real Transfer of Robotic Control With Dynamics Randomization
,” 2018 IEEE International Conference on Robotics and Automation (
ICRA
),
Brisbane, Australia, May 21–25, pp.
3803
3810
.10.1109/ICRA.2018.8460528
39.
Wada
,
D.
,
Araujo-Estrada
,
S.
, and
Windsor
,
S.
,
2022
, “
Sim-to-Real Transfer for Fixed-Wing Uncrewed Aerial Vehicle: Pitch Control by High-Fidelity Modelling and Domain Randomization
,”
IEEE Rob. Autom. Lett.
,
7
(
4
), pp.
11735
11742
.10.1109/LRA.2022.3205442
40.
Muratore
,
F.
,
Gienger
,
M.
, and
Peters
,
J.
,
2021
, “
Assessing Transferability From Simulation to Reality for Reinforcement Learning
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
43
(
4
), pp.
1172
1183
.10.1109/TPAMI.2019.2952353
41.
Bacci
,
E.
, and
Parker
,
D.
,
2020
, “
Probabilistic Guarantees for Safe Deep Reinforcement Learning
,” Formal Modeling and Analysis of Timed Systems: 18th International Conference (
FORMATS
)
,
Vienna, Austria
,
Sept. 1–3
, pp.
231
248
.https://www.cs.ox.ac.uk/david.parker/papers/formats20.pdf
42.
Kazak
,
Y.
,
Barrett
,
C.
,
Katz
,
G.
, and
Schapira
,
M.
,
2019
, “
Verifying Deep-RL-Driven Systems
,”
Proceedings of the 2019 Workshop on Network Meets AI & ML
, Beijing, China, Aug. 23, pp.
83
89
.10.1145/3341216.3342218
43.
Prabhakar
,
P.
, and
Rahimi Afzal
,
Z.
,
2019
, “
Abstraction Based Output Range Analysis for Neural Networks
,”
Proceedings of the 33rd International Conference on Neural Information Processing Systems
, Vancouver, BC, Canada, Dec. 8–14, pp.
15788
15798
.https://proceedings.neurips.cc/paper_files/paper/2019/file/5df0385cba256a135be596dbe28fa7aa-Paper.pdf
44.
Cheng
,
R.
,
Orosz
,
G.
,
Murray
,
R. M.
, and
Burdick
,
J. W.
,
2019
, “
End-to-End Safe Reinforcement Learning Through Barrier Functions for Safety-Critical Continuous Control Tasks
,”
Proceedings of AAAI Conference Artificial Intelligence
, Honolulu, HI, Jan. 27–Feb. 1, pp.
3387
3395
.10.1609/aaai.v33i01.33013387
45.
Design, Analysis and Research Corporation
,
2024
, “
AAA in Publications
,” accessed April 20, 2024, https://www.darcorp.com/advanced-aircraft-analysis-publications/
46.
Daşkiran
,
O.
, and
Kavsaoğlu
,
M. Ş.
,
2013
, “
Flight Dynamics Analysis and Control of Transport Aircraft Subject to Failure
,”
EUCASS Proceedings Series – Advances, AeroSpace Sciences, Array
, St. Petersburg, Russia, July 4–8, pp.
347
362
.10.1051/eucass/201306347
47.
Lampton
,
A.
, and
Valasek
,
J.
,
2012
, “
Prediction of Icing Effects on the Lateral/Directional Stability and Control of Light Airplanes
,”
Aerosp. Sci. Technol.
,
23
(
1
), pp.
305
311
.10.1016/j.ast.2011.08.005
48.
Briggs
,
H. C.
,
2015
, “
A Survey of Integrated Tools for Air Vehicle Design, Part I
,”
AIAA
Paper No. 2015-0803.10.2514/6.2015-0803
49.
Roskam
,
J.
,
1985
,
Airplane Design, Parts I-VIII
,
DARCorporation
, Lawrence, KS.
50.
Roskam
,
J.
,
1998
,
Airplane Flight Dynamics and Automatic Flight Controls
,
DARCorporation
, Lawrence, KS.
51.
Finck
,
R.
,
Ellison
,
D.
, and
Malthan
,
L.
,
1978
,
USAF (United States Air Force) Stability and Control DATCOM (Data Compendium)
,
Defense Technical Information Center
, Wright-Patterson AFB, OH.
52.
Benyamen
,
H.
, and
Keshmiri
,
S.
,
2022
, “
Flight Test Validation Verification of @AIR Distributed Electric Propulsion Aircraft Dynamic Model
,” 2022 International Conference on Unmanned Aircraft Systems (
ICUAS
), Dubrovnik, Croatia, June 21–24, pp.
821
830
.10.1109/ICUAS54217.2022.9836206
53.
Xu
,
J.
,
McKinnis
,
A.
,
Keshmiri
,
S.
, and
Bowes
,
R.
,
2022
, “
Flight Test of the Novel Fixed-Wing Multireference Multiscale LN Guidance Logic for Complex Path Following
,”
J. Intell. Rob. Syst.
,
105
(
3
), p.
63
.10.1007/s10846-022-01660-x
54.
Blevins
,
A. T.
,
McKinnis
,
A.
,
Xu
,
J.
, and
Keshmiri
,
S. S.
,
2022
, “
Flight Test Validation of Real-Time UAS Mission Planning Autonomy and Optimal Path Planning for Flight Line Surveys
,”
AIAA
Paper No. 2022-2292.10.2514/6.2022-2292
55.
Kim
,
A. R.
,
Keshmiri
,
S.
,
Blevins
,
A.
,
Shukla
,
D.
, and
Huang
,
W.
,
2020
, “
Control of Multi-Agent Collaborative Fixed-Wing UASs in Unstructured Environment
,”
J. Intell. Rob. Syst.
,
97
(
1
), pp.
205
225
.10.1007/s10846-019-01057-3
56.
Zhang
,
A.
,
Lipton
,
Z. C.
,
Li
,
M.
, and
Smola
,
A. J.
,
2023
,
Dive Into Deep Learning
,
Cambridge University Press
, Cambridge, UK
.
57.
Abadi
,
M.
,
Agarwal
,
A.
,
Barham
,
P.
,
Brevdo
,
E.
,
Chen
,
Z.
,
Citro
,
C.
,
Corrado
,
G. S.
, et al.,
2015
, “
TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems
,” accessed June 1, 2020, tensorflow.org
58.
Tensorflow
,
2022
, “
Time Series Forecasting Tutorial
,” accessed Mar. 15, 2022, https://www.tensorflow.org/tutorials/structured_data/time_series
59.
Kingma
,
D. P.
, and
Ba
,
J.
,
2015
, “
Adam: A Method for Stochastic Optimization
,” 3rd International Conference on Learning Representations (
ICLR
), San Diego, CA, May 7–9, pp.
1
15
.10.48550/arXiv.1412.6980
60.
Keras
,
2024
, “
Keras 3 API Documentation, Metrics, Regression Metrics
,” accessed Feb. 21, 2024, https://keras.io/api/metrics/regression_metrics/
61.
Schulman
,
J.
,
Wolski
,
F.
,
Dhariwal
,
P.
,
Radford
,
A.
, and
Klimov
,
O.
,
2017
, “
Proximal Policy Optimization Algorithms
,” preprint
arXiv:1707.06347
.10.48550/arXiv.1707.06347
62.
Konda
,
V.
, and
Tsitsiklis
,
J.
,
1999
, “
Actor-Critic Algorithms
,”
Proceedings of the 12th International Conference on Neural Information Processing Systems
, Denver, CO, Nov. 29–Dec. 4, pp.
1008
1014
.https://proceedings.neurips.cc/paper_files/paper/1999/file/6449f44a102fde848669bdd9eb6b76fa-Paper.pdf
63.
Sutton
,
R. S.
,
McAllester
,
D.
,
Singh
,
S.
, and
Mansour
,
Y.
,
1999
, “
Policy Gradient Methods for Reinforcement Learning With Function Approximation
,”
Proceedings of the 12th International Conference on Neural Information Processing Systems
, Denver, CO, Nov. 29–Dec. 4, pp.
1057
1063
.https://proceedings.neurips.cc/paper_files/paper/1999/file/464d828b85b0bed98e80ade0a5c43b0f-Paper.pdf
64.
Stastny
,
T. J.
,
Garcia
,
G. A.
, and
Keshmiri
,
S. S.
,
2014
, “
Collision and Obstacle Avoidance in Unmanned Aerial Systems Using Morphing Potential Field Navigation and Nonlinear Model Predictive Control
,”
ASME J. Dyn. Syst., Meas., Control
,
137
(
1
), p.
014503
.10.1115/1.4028034
You do not currently have access to this content.