Abstract

Objects moving in water or stationary objects in streams create a vortex wake. An underwater robot encountering the wake created by another body experiences disturbance forces and moments. These disturbances can be associated with the disturbance velocity field and the bodies creating them. Essentially, the vortex wakes encode information about the objects and the flow conditions. Underwater robots that often function with constrained sensing capabilities can benefit from extracting this information from vortex wakes. Many species of fish do exactly this, by sensing flow features using their lateral lines as part of their multimodal sensing capabilities. Besides the necessary sensing hardware, a more important aspect of sensing is related to the algorithms needed to extract the relevant information about the flow. This paper advances a framework for such an algorithm using the setting of a pitching hydrofoil in the wake of a thin plate (obstacle). Using time series pressure measurements on the surface of the hydrofoil and the angular velocity of the hydrofoil, a Koopman operator is constructed that propagates the time series forward in time. Multiple approaches are used to extract dynamic information from the Koopman operator to estimate the plate position and are bench marked against a state-of-the-art convolutional neural network (CNN) applied directly to the time series. We find that using the Koopman operator for feature extraction improves the estimation accuracy compared to the CNN for the same purpose, enabling “blind” sensing using the lateral line.

References

1.
Triantafyllou
,
M. S.
,
Weymouth
,
G. D.
, and
Miao
,
J.
,
2016
, “
Biomimetic Survival Hydrodynamics and Flow Sensing
,”
Annu. Rev. Fluid Mech
.,
48
(
1
), pp.
1
24
.10.1146/annurev-fluid-122414-034329
2.
Gazzola
,
M.
,
Argentina
,
M.
, and
Mahadevan
,
L.
,
2015
, “
Gait and Speed Selection in Slender Inertial Swimmers
,”
Proc. Natl. Acad. Sci. U.S.A
.,
112
(
13
), pp.
3874
3879
.10.1073/pnas.1419335112
3.
Ijspeert
,
I. A.
,
2014
, “
Biorobotics: Using Robots to Emulate and Investigate Agile Locomotion
,”
Science
,
346
(
6206
), pp.
196
203
.10.1126/science.1254486
4.
Kelasidi
,
E.
,
Liljeback
,
P.
,
Pettersen
,
K. Y.
, and
Gravdahl
,
J. T.
,
2016
, “
Innovation in Underwater Robots: Biologically Inspired Swimming Snake Robots
,”
IEEE Rob. Autom. Mag
.,
23
(
1
), pp.
44
62
.10.1109/MRA.2015.2506121
5.
Pitcher
,
T. J.
,
Partridge
,
B.
, and
Wardle
,
C. S.
,
1976
, “
A Blind Fish Can School
,”
Science
,
194
(
4268
), pp.
963
965
.10.1126/science.982056
6.
Bleckmann
,
H.
, and
Zelick
,
R.
,
2009
, “
Lateral Line System of Fish
,”
Integr. Zool
.,
4
(
1
), pp.
13
25
.10.1111/j.1749-4877.2008.00131.x
7.
Sirovich
,
L.
,
1987
, “
Turbulence and the Dynamics of Coherent Structures. Part 1: Coherent Structures
,”
Q. Appl. Math
.,
45
(
3
), pp.
561
571
.10.1090/qam/910462
8.
Berkooz
,
G.
,
Holmes
,
P.
, and
Lumley
,
J. L.
,
2003
, “
The Proper Orthogonal Decomposition in the Analysis of Turbulent Flows
,”
Annu. Rev. Fluid Mech
.,
25
(
1
), pp.
539
575
.10.1146/annurev.fluid.25.1.539
9.
Everson
,
R.
, and
Sirovich
,
L.
,
1995
, “
Karhunen–Loève Procedure for Gappy Data
,”
J. Opt. Soc. Am. A
,
12
(
8
), pp.
1657
1664
.10.1364/JOSAA.12.001657
10.
Bui-Thanh
,
T.
,
Damodaran
,
M.
, and
Willcox
,
K. E.
,
2004
, “
Aerodynamic Data Reconstruction and Inverse Design Using Proper Orthogonal Decomposition
,”
AIAA J
.,
42
(
8
), pp.
1505
1516
.10.2514/1.2159
11.
Willcox
,
K. E.
,
2006
, “
Unsteady Flow Sensing and Estimation Via the Gappy Proper Orthogonal Decomposition
,”
Comput. Fluids
,
35
(
2
), pp.
208
226
.10.1016/j.compfluid.2004.11.006
12.
Rowley
,
C. W.
,
Mezić
,
I.
,
Bagheri
,
S.
,
Schlatter
,
P.
, and
Henningson
,
D. S.
,
2009
, “
Spectral Analysis of Nonlinear Flows
,”
J. Fluid Mech
.,
641
, pp.
115
127
.10.1017/S0022112009992059
13.
Schmid
,
P. J.
,
2010
, “
Dynamic Mode Decomposition of Numerical and Experimental Data
,”
J. Fluid Mech
.,
656
, pp.
5
28
.10.1017/S0022112010001217
14.
Li
,
Q.
,
Dietrich
,
F.
,
Bollt
,
E. M.
, and
Kevrekidis
,
I. G.
,
2017
, “
Extended Dynamic Mode Decomposition With Dictionary Learning: A Data-Driven Adaptive Spectral Decomposition of the Koopman Operator
,”
Chaos
,
27
(
10
), p.
103111
.10.1063/1.4993854
15.
Otto
,
S.
, and
Rowley
,
C.
,
2019
, “
Linearly Recurrent Autoencoder Networks for Learning Dynamics
,”
SIAM J. Appl. Dyn. Syst
.,
18
(
1
), pp.
558
593
.10.1137/18M1177846
16.
Champion
,
K.
,
Lusch
,
B.
,
Nathan Kutz
,
J.
, and
Brunton
,
S. L.
,
2019
, “
Data-Driven Discovery of Coordinates and Governing Equations
,”
PNAS
,
116
(
45
), pp.
22445
22451
.10.1073/pnas.1906995116
17.
Raissi
,
M.
,
Yazdani
,
A.
, and
Karniadakis
,
G.
,
2020
, “
Hidden Fluid Mechanics: Learning Velocity and Pressure Fields From Flow Visualizations
,”
Science
,
367
(
6481
), pp.
1026
1030
.10.1126/science.aaw4741
18.
Brunton
,
S. L.
,
Noack
,
B. R.
, and
Koumoutsakos
,
P.
,
2019
, “
Machine Learning for Fluid Mechanics
,”
Annu. Rev. Fluid Mech
.,
52
, p.
2020
.10.1146/annurev-fluid-010719-060214
19.
Callaham
,
J. L.
,
Maeda
,
K.
, and
Brunton
,
S. L.
,
2019
, “
Robust Flow Reconstruction From Limited Measurements Via Sparse Representation
,”
Phys. Rev. Fluids
,
4
(
10
), p.
103907
.10.1103/PhysRevFluids.4.103907
20.
Alsalman
,
M.
,
Colvert
,
B.
, and
Kanso
,
E.
,
2018
, “
Training Bioinspired Sensors to Classify Flows
,”
Bioinspiration Biomimetics
,
14
(
1
), p.
016009
.10.1088/1748-3190/aaef1d
21.
Colvert
,
B.
,
Alsalman
,
M.
, and
Kanso
,
E.
,
2018
, “
Classifying Vortex Wakes Using Neural Networks
,”
Bioinspiration Biomimetics
,
13
(
2
), p.
025003
.10.1088/1748-3190/aaa787
22.
Pollard
,
B.
, and
Tallapragada
,
P.
,
2020
, “
Sensing and Classification of Ambient Vortex Wake From the Kinematics of a Bioinspired Swimming Robot Using Neural Networks
,”
ASME
Paper No. DSCC2020-3282.10.1115/DSCC2020-3282
23.
Pollard
,
B.
, and
Tallapragada
,
P.
,
2021
, “
Learning Hydrodynamic Signatures Through Proprioceptive Sensing by Bioinspired Swimmers
,”
Bioinspiration Biomimetics
,
16
(
2
), p.
026014
.10.1088/1748-3190/abd044
24.
Rodwell
,
C.
,
Pollard
,
B.
, and
Tallapragada
,
P.
,
2023
, “
Proprioceptive Wake Classification by a Body With a Passive Tail
,”
Bioinspiration Biomimetics
,
18
(
4
), p.
046001
.10.1088/1748-3190/accd34
25.
Rodwell
,
C.
, and
Tallapragada
,
P.
,
2022
, “
Embodied Hydrodynamic Sensing and Estimation Using Koopman Modes in an Underwater Environment
,”
American Control Conference
(
ACC
), Atlanta, GA, June 8–10, pp.
1632
1637
.10.23919/ACC53348.2022.9867211
26.
Rodwell
,
C.
,
Sourav
,
K.
, and
Tallapragada
,
P.
,
2024
, “
Feel the Force: From Local Surface Pressure Measurement to Flow Reconstruction in Fluid–Structure Interaction
,”
Phys. Fluids
,
36
(
1
), p.
013606
.10.1063/5.0178311
27.
Bright
,
I.
,
Lin
,
G.
, and
Kutz
,
J. N.
,
2013
, “
Compressive Sensing Based Machine Learning Strategy for Characterizing the Flow Around a Cylinder With Limited Pressure Measurements
,”
Phys. Fluids
,
25
(
12
), p.
127102
.10.1063/1.4836815
28.
Gomez
,
D. F.
,
Lagor
,
F. D.
,
Kirk
,
P. B.
,
Lind
,
A. H.
,
Jones
,
A. R.
, and
Paley
,
D. A.
,
2019
, “
Data-Driven Estimation of the Unsteady Flowfield Near an Actuated Airfoil
,”
J. Guid., Control, Dyn
.,
42
(
10
), pp.
2279
2287
.10.2514/1.G004339
29.
Lidard
,
J. M.
,
Goswami
,
D.
,
Snyder
,
D.
,
Sedky
,
G.
,
Jones
,
A. R.
, and
Paley
,
D. A.
,
2021
, “
Output Feedback Control for Lift Maximization of a Pitching Airfoil
,”
J. Guid., Control, Dyn
.,
44
(
3
), pp.
587
594
.10.2514/1.G005441
30.
Yen
,
W.-K.
,
Huang
,
C.-F.
,
Chang
,
H.-R.
, and
Guo
,
J.
,
2020
, “
Localization of a Leading Robotic Fish Using a Pressure Sensor Array on Its Following Vehicle
,”
Bioinspiration Biomimetics
,
16
(
1
), p.
016007
.10.1088/1748-3190/abb0cc
31.
Abdulsadda
,
A. T.
, and
Tan
,
X.
,
2013
, “
Underwater Tracking of a Moving Dipole Source Using an Artificial Lateral Line: Algorithm and Experimental Validation With Ionic Polymer–Metal Composite Flow Sensors
,”
Smart Mater. Struct
.,
22
(
4
), p.
045010
.10.1088/0964-1726/22/4/045010
32.
Wolf
,
B. J.
,
van de Wolfshaar
,
J.
, and
van Netten
,
S. M.
,
2020
, “
Three-Dimensional Multi-Source Localization of Underwater Objects Using Convolutional Neural Networks for Artificial Lateral Lines
,”
J. R. Soc. Interface
,
17
(
162
), p.
20190616
.10.1098/rsif.2019.0616
33.
Souza
,
F. A.
,
Araújo
,
R.
, and
Mendes
,
J.
,
2016
, “
Review of Soft Sensor Methods for Regression Applications
,”
Chemom. Intell. Lab. Syst
.,
152
, pp.
69
79
.10.1016/j.chemolab.2015.12.011
34.
Facco
,
P.
,
Doplicher
,
F.
,
Bezzo
,
F.
, and
Barolo
,
M.
,
2009
, “
Moving Average PLS Soft Sensor for Online Product Quality Estimation in an Industrial Batch Polymerization Process
,”
J. Process Control
,
19
(
3
), pp.
520
529
.10.1016/j.jprocont.2008.05.002
35.
Zhao
,
B.
,
Lu
,
H.
,
Chen
,
S.
,
Liu
,
J.
, and
Wu
,
D.
,
2017
, “
Convolutional Neural Networks for Time Series Classification
,”
J. Syst. Eng. Electron
.,
28
(
1
), pp.
162
169
.10.21629/JSEE.2017.01.18
36.
Issa
,
R. I.
,
1986
, “
Solution of the Implicitly Discretised Fluid Flow Equations by Operator-Splitting
,”
J. Comput. Phys
.,
62
(
1
), pp.
40
65
.10.1016/0021-9991(86)90099-9
37.
Koopman
,
B. O.
,
1931
, “
Hamiltonian Systems and Transformation in Hilbert Space
,”
Proc. Natl. Acad. Sci
.,
17
(
5
), pp.
315
318
.10.1073/pnas.17.5.315
38.
Lasota
,
A.
, and
Mackey
,
M. C.
,
1994
,
Chaos, Fractals, and Noise: Stochastic Aspects of Dynamics
,
Springer
, New York.
39.
Budisic
,
M.
,
Mohr
,
R.
, and
Mezić
,
I.
,
2012
, “
Applied Koopmanism
,”
Chaos: Interdiscip. J. Nonlinear Sci
.,
22
(
4
), p.
047510
.10.1063/1.4772195
40.
Tu
,
J. H.
,
Rowley
,
C. W.
,
Luchtenburg
,
D. M.
,
Brunton
,
S. L.
, and
Kutz
,
J. N.
,
2014
, “
On Dynamic Mode Decomposition: Theory and Applications
,”
J. Comput. Dyn
.,
1
(
2
), pp.
391
421
.10.3934/jcd.2014.1.391
41.
Korda
,
M.
, and
Mezic
,
I.
,
2017
, “
On Convergence of Extended Dynamic Mode Decomposition to the Koopman Operator
,”
J. Nonlinear Sci
.,
28
(
2
), pp.
687
710
.10.1007/s00332-017-9423-0
42.
Haseli
,
M.
, and
Cortes
,
J.
,
2023
, “
Temporal Forward–Backward Consistency, Not Residual Error, Measures the Prediction Accuracy of Extended Dynamic Mode Decomposition
,”
IEEE Control Syst. Lett
.,
7
, pp.
649
654
.10.1109/LCSYS.2022.3214476
43.
Ismail Fawaz
,
H.
,
Forestier
,
G.
,
Weber
,
J.
,
Idoumghar
,
L.
, and
Muller
,
P.-A.
,
2019
, “
Deep Learning for Time Series Classification: A Review
,”
Data Min. Knowl. Discovery
,
33
(
4
), pp.
917
963
.10.1007/s10618-019-00619-1
44.
Prechelt
,
L.
,
1998
, “Early Stopping—But When?,”
Neural Networks: Tricks of the Trade
,
Springer
, Berlin, Germany, pp.
55
69
.
You do not currently have access to this content.