Abstract

In this paper, we consider the optimal control of material microstructures. Such material microstructures are modeled by the so-called phase-field model. We study the underlying physical structure of the model and propose a data-based approach for its optimal control, along with a comparison to the control using a state-of-the-art reinforcement learning (RL) algorithm. Simulation results show the feasibility of optimally controlling such microstructures to attain desired material properties and complex target microstructures.

References

1.
Nikolas Provatas
,
K. E.
,
2010
,
Phase Field Methods in Materials Science and Engineering
,
Wiley
, Hoboken, NJ.
2.
Boettinger
,
W. J.
,
Warren
,
J. A.
,
Beckermann
,
C.
, and
Karma
,
A.
,
2002
, “
Phase-Field Simulation of Solidification
,”
Annu. Rev. Mater. Res.
,
32
(
1
), pp.
163
194
.10.1146/annurev.matsci.32.101901.155803
3.
Moelans
,
N.
,
Blanpain
,
B.
, and
Wollants
,
P.
,
2008
, “
An Introduction to Phase-Field Modeling of Microstructure Evolution
,”
Calphad
,
32
(
2
), pp.
268
294
.10.1016/j.calphad.2007.11.003
4.
Nguyen
,
L.
,
Shi
,
R.
,
Wang
,
Y.
, and
Graef
,
M. D.
,
2016
, “
Quantification of Rafting of Precipitates in Ni-Based Superalloys
,”
Acta Mater.
,
103
, pp.
322
333
.10.1016/j.actamat.2015.09.060
5.
Travasso
,
R. D.
,
Castro
,
M.
, and
Oliveira
,
J. C.
,
2011
, “
The Phase-Field Model in Tumor Growth
,”
Philos. Mag.
,
91
(
1
), pp.
183
206
.10.1080/14786435.2010.501771
6.
Flint
,
T.
,
Sun
,
Y.
,
Xiong
,
Q.
,
Smith
,
M.
, and
Francis
,
J.
,
2019
, “
Phase-Field Simulation of Grain Boundary Evolution in Microstructures Containing Second-Phase Particles With Heterogeneous Thermal Properties
,”
Sci. Rep.
,
9
(
1
), p.
12
.10.1038/s41598-019-54883-8
7.
Cheniour
,
A.
,
Tonks
,
M.
,
Gong
,
B.
,
Yao
,
T.
,
He
,
L.
,
Harp
,
J.
,
Beeler
,
B.
,
Zhang
,
Y.
, and
Lian
,
J.
,
2020
, “
Development of a Grain Growth Model for U3Si2 Using Experimental Data, Phase Field Simulation and Molecular Dynamics
,”
J. Nucl. Mater.
,
532
, p.
152069
.10.1016/j.jnucmat.2020.152069
8.
Khaderi
,
S.
,
Murali
,
P.
, and
Ahluwalia
,
R.
,
2014
, “
Failure and Toughness of Bio-Inspired Composites: Insights From Phase Field Modelling
,”
Comput. Mater. Sci.
,
95
, pp.
1
7
.10.1016/j.commatsci.2014.07.001
9.
Hansen-Dörr
,
A. C.
,
de Borst
,
R.
,
Hennig
,
P.
, and
Kästner
,
M.
,
2019
, “
Phase-Field Modelling of Interface Failure in Brittle Materials
,”
Comput. Methods Appl. Mech. Eng.
,
346
, pp.
25
42
.10.1016/j.cma.2018.11.020
10.
Allen
,
S. M.
, and
Cahn
,
J. W.
,
1979
, “
A Microscopic Theory for Antiphase Boundary Motion and Its Application to Antiphase Domain Coarsening
,”
Acta Metall.
,
27
(
6
), pp.
1085
1095
.10.1016/0001-6160(79)90196-2
11.
Cahn
,
J. W.
, and
Hilliard
,
J. E.
,
1958
, “
Free Energy of a Nonuniform System. I. Interfacial Free Energy
,”
J. Chem. Phys
,
28
(
2
), pp.
258
267
.10.1063/1.1744102
12.
Benner
,
P.
, and
Stoll
,
M.
,
2013
, “
Optimal Control for Allen-Cahn Equations Enhanced by Model Predictive Control
,”
IFAC Proc. Vol.
,
46
(
26
), pp.
139
143
.10.3182/20130925-3-FR-4043.00062
13.
Blank
,
L.
,
Farshbaf Shaker
,
M.
,
Hecht
,
C.
,
Michl
,
J.
, and
Rupprecht
,
C.
,
2013
, “
Optimal Control of Allen-Cahn Systems
,” Birkhäuser Cham, Vol.
165
, Basel, Switzerland, p.
12
.
14.
Zhang
,
X.
,
Li
,
H.
, and
Liu
,
C.
,
2020
, “
Optimal Control Problem for the Cahn–Hilliard/Allen–Cahn Equation With State Constraint
,”
Appl. Math. Optim.
,
82
(
2
), pp.
721
754
.10.1007/s00245-018-9546-1
15.
Scarpa
,
L.
,
2019
, “
Optimal Distributed Control of a Stochastic Cahn–Hilliard Equation
,”
SIAM J. Control Optim.
,
57
(
5
), pp.
3571
3602
.10.1137/18M1222223
16.
Kadiri
,
M.
,
Louaked
,
M.
, and
Trabelsi
,
S.
,
2023
, “
Optimal Control and Parameters Identification for the Cahn–Hilliard Equations Modeling Tumor Growth
,”
Mathematics
,
11
(
7
), p.
1607
.10.3390/math11071607
17.
Wang
,
R.
,
Parunandi
,
K.
,
Yu
,
D.
,
Kalathil
,
D.
, and
Chakravorty
,
S.
,
2019
, “
Decoupled Data Based Approach for Learning to Control Nonlinear Dynamical Systems
,”
IEEE Trans. Autom. Control
, 67(7), pp.
3582
3589
.10.1109/TAC.2021.3108552
18.
Sutton
,
R. S.
, and
Barto
,
A. G.
,
2018
,
Reinforcement Learning: An Introduction
,
MIT Press
, Cambridge, MA.
19.
Silver
,
D.
,
Huang
,
A.
,
Maddison
,
C. J.
,
Guez
,
A.
,
Sifre
,
L.
,
van den Driessche
,
G.
, and
Schrittwieser
,
J.
, et al.,
2016
, “
Mastering the Game of Go With Deep Neural Networks and Tree Search
,”
Nature
,
529
(
7587
), pp.
484
489
.10.1038/nature16961
20.
Lillicrap
,
T. P.
,
Hunt
,
J. J.
,
Pritzel
,
A.
,
Heess
,
N.
,
Erez
,
T.
,
Tassa
,
Y.
,
Silver
,
D.
, and
Wierstra
,
D.
,
2015
, “Continuous Control With Deep Reinforcement Learning,” preprint
arXiv:1509.02971
.10.48550/arXiv.1509.02971
21.
Levine
,
S.
,
Finn
,
C.
,
Darrell
,
T.
, and
Abbeel
,
P.
,
2016
, “
End-to-End Training of Deep Visuomotor Policies
,”
J. Mach. Learn. Res.
,
17
(
1
), pp.
1334
1373
.https://www.jmlr.org/papers/volume17/15-522/15-522.pdf
22.
Yuhuai
,
W.
,
Elman
,
M.
,
Shun
,
L.
,
Roger
,
G.
, and
Jimmy
,
B.
,
2017
, “
Scalable Trust-Region Method for Deep Reinforcement Learning Using Kronecker-Factored Approximation
,” 31st International Conference on Neural Information Processing Systems (
NIPS
), Long Beach, CA, Dec. 4–9, pp.
5285
5294
.https://proceedings.neurips.cc/paper_files/paper/2017/file/361440528766bbaaaa1901845cf4152b-Paper.pdf
23.
Schulman
,
J.
,
Levine
,
S.
,
Moritz
,
P.
,
Jordan
,
M. I.
, and
Abbeel
,
P.
,
2015
, “
Trust Region Policy Optimization
,”
Proceedings of the 32nd International Conference on Machine Learning
, Lille, France, July 6–11, pp.
1
16
.https://arxiv.org/pdf/1502.05477
24.
Schulman
,
J.
,
Wolski
,
F.
,
Dhariwal
,
P.
,
Radford
,
A.
, and
Klimov
,
O.
,
2017
, “
Proximal Policy Optimization Algorithms
,” preprint
arXiv:1707.06347
.10.48550/arXiv.1707.06347
25.
Henderson
,
P.
,
Islam
,
R.
,
Bachman
,
P.
,
Pineau
,
J.
,
Precup
,
D.
, and
Meger
,
D.
,
2018
, “
Deep Reinforcement Learning That Matters
,”
32nd AAAI Conference on Artificial Intelligence
, New Orleans, LA, Feb. 2–7, pp.
3207
3214
.https://dl.acm.org/doi/abs/10.5555/3504035.3504427
26.
Pan
,
Y.
,
Farahmand
,
A.-M.
,
White
,
M.
,
Nabi
,
S.
,
Grover
,
P.
, and
Nikovski
,
D.
,
2018
, “
Reinforcement Learning With Function-Valued Action Spaces for Partial Differential Equation Control
,”
Proceedings of the 35th International Conference on Machine Learning
, Stockholm, Sweden, July 10–15,
pp.
3986
3995
.https://merl.com/publications/docs/TR2018-028.pdf
27.
Bensoussan
,
A.
,
Da Prato
,
G.
,
Delfour
,
M. C.
, and
Mitter
,
S. K.
,
1992
,
Representation and Control of Infinite Dimensional Systems
, Vols.
1 and 2
,
Birkhäuser Boston
, Boston, MA.
28.
Lall
,
S.
,
Marsden
,
J. E.
, and
Glavaški
,
S.
,
2002
, “
A Subspace Approach to Balanced Truncation for Model Reduction of Nonlinear Control Systems
,”
Int. J. Robust Nonlinear Control: IFAC-Affiliated J.
,
12
(
6
), pp.
519
535
.10.1002/rnc.657
29.
Ravindran
,
S.
,
2002
, “
Adaptive Reduced-Order Controllers for a Thermal Flow System Using Proper Orthogonal Decomposition
,”
SIAM J. Sci. Comput.
,
23
(
6
), pp.
1924
1942
.10.1137/S1064827500374716
30.
Kunisch
,
K.
, and
Volkwein
,
S.
,
2008
, “
Proper Orthogonal Decomposition for Optimality Systems
,”
ESAIM: Math. Modell. Numer. Anal.-Modél. Math. Anal. Numér.
,
42
(
1
), pp.
1
23
.10.1051/m2an:2007054
31.
Yu
,
D.
,
Rafieisakhaei
,
M.
, and
Chakravorty
,
S.
,
2017
, “
Stochastic Feedback Control of Systems With Unknown Nonlinear Dynamics
,” 56th IEEE Conference on Decision and Control (
CDC
), Melbourne, VIC, Australia, Dec. 12–15, pp.
4309
4314
.10.1109/CDC.2017.8264294
32.
Wang
,
R.
,
Parunandi
,
K. S.
,
Sharma
,
A.
,
Chakravorty
,
S.
, and
Kalathil
,
D.
,
2020
, “
On the Search for Feedback in Reinforcement Learning
,” 60th IEEE Conference on Decision and Control (
CDC
), Austin, TX, Dec. 14–17, pp.
1560
1567
.10.1109/CDC45484.2021.9683350
33.
Bryson
,
A. E.
, and
Ho
,
Y.-C.
,
1975
,
Applied Optimal Control: Optimization, Estimation, and Control
,
Routledge
,
New York
.
34.
Barrett
,
J. W.
,
Nürnberg
,
R.
, and
Styles
,
V.
,
2004
, “
Finite Element Approximation of a Phase Field Model for Void Electromigration
,”
SIAM J. Numer. Anal.
,
42
(
2
), pp.
738
772
.10.1137/S0036142902413421
35.
Sharma
,
A.
, and
Chakravorty
,
S.
,
2023
, “
A Reduced Order Iterative Linear Quadratic Regulator (ILQR) Technique for the Optimal Control of Nonlinear Partial Differential Equations
,” 2023 American Control Conference (
ACC
), San Diego, CA, May 31–June 2, pp.
3389
3394
.10.23919/ACC55779.2023.10156062
36.
Goyal
,
R.
,
Wang
,
R.
,
Mohamed
,
M. N. G.
,
Sharma
,
A.
, and
Chakravorty
,
S.
,
2023
, “
An Information-State Based Approach to the Optimal Output Feedback Control of Nonlinear Systems
,” preprint
arXiv:2107.08086
.10.48550/arXiv.2107.08086
You do not currently have access to this content.