Abstract

This technical brief presents anti-windup adaptation algorithms for a look-up table (LUT), widely used in data-driven engine control systems to accurately model complex features while minimizing computational demand. Engine control systems are prone to uncertain variations due to aging, faults, and manufacturing tolerances, which can impact performance and emissions unless effectively managed. Therefore, there is a growing demand for adaptive features in these systems to maintain robust performance and emissions over their lifespan. This study develops computationally efficient adaptive look-up table (ALUT) algorithms using anti-windup recursive parameter estimation and covariance matrix resetting, ensuring robust and rapid adaptation under various operating conditions. The effectiveness of these algorithms is demonstrated through adapting an engine-out nitrogen oxides (NOx) concentration map, which is crucial for tailpipe emission controls in compression-ignition (CI) engines.

References

1.
Nesbit
,
C.
, and
Hedrick
,
J. K.
,
1991
, “
Adaptive Engine Control
,”
American Control Conference
,
Boston, MA
, June 26–28, pp.
2072
2076
.10.23919/ACC.1991.4791763
2.
Liu
,
D.
,
Javaherian
,
H.
,
Kovalenko
,
O.
, and
Huang
,
T.
,
2008
, “
Adaptive Critic Learning Techniques for Engine Torque and Air-Fuel Ratio Control
,”
IEEE Trans. Syst. Man Cybern. B Cybern.
,
38
(
4
), pp.
988
993
.10.1109/TSMCB.2008.922019
3.
Jones
,
J. C. P.
, and
Muske
,
K. R.
,
2009
, “
Identification and Adaptation of Linear Look-Up Table Parameters Using an Efficient Recursive Least-Squares Technique
,”
ISA Trans.
,
48
(
4
), pp.
476
483
.10.1016/j.isatra.2009.04.007
4.
Hausberg
,
F.
,
Hecker
,
S.
,
Pfeffer
,
P.
,
Plöchl
,
M.
, and
Rupp
,
M.
,
2014
, “
Incorporation of Adaptive Grid-Based Look-Up Tables in Adaptive Feedforward Algorithms for Active Engine Mounts
,”
International Symposium on Advanced Vehicle Control
,
Tokyo, Japan
, Sept. 22–26, pp.
535
540
.https://publik.tuwien.ac.at/files/PubDat_230707.pdf
5.
Vogt
,
M.
,
Müller
,
N.
, and
Isermann
,
R.
,
2004
, “
On-Line Adaptation of Grid-Based Look-Up Tables Using a Fast Linear Regression Technique
,”
ASME J. Dyn. Syst., Meas., Control
,
126
(
4
), pp.
732
739
.10.1115/1.1849241
6.
Guardiola
,
C.
,
Pla
,
B.
,
Blanco-Rodriguez
,
D.
, and
Eriksson
,
L.
,
2013
, “
A Computationally Efficient Kalman Filter-Based Estimator for Updating Look-Up Tables Applied to NOx Estimation in Diesel Engines
,”
Control Eng. Pract.
,
21
(
11
), pp.
1455
1468
.10.1016/j.conengprac.2013.06.015
7.
Guardiola
,
C.
,
Pla
,
B.
,
Blanco-Rodriguez
,
D.
, and
Cabrera
,
P.
,
2013
, “
A Learning Algorithm Concept for Updating Look-Up Tables for Automotive Applications
,”
Math. Comput. Model.
,
57
(
7–8
), pp.
1979
1989
.10.1016/j.mcm.2012.02.001
8.
Höckerdal
,
E.
,
Frisk
,
E.
, and
Eriksson
,
L.
,
2011
, “
EKF-Based Adaptation of Look-Up Tables With an Air Mass Flow Sensor Application
,”
Control Eng. Pract.
,
19
(
5
), pp.
442
453
.10.1016/j.conengprac.2011.01.006
9.
Stotsky
,
A.
,
2007
, “
Data-Driven Algorithms for Engine Friction Estimation
,”
Proc. Inst. Mech. Eng. D: J. Automob. Eng.
,
221
(
7
), pp.
901
909
.10.1243/09544070JAUTO230
10.
Wu
,
G.
,
2006
, “
A Table Update Method for Adaptive Knock Control
,”
SAE
Paper No. 2006-01-0607.10.4271/2006-01-0607
11.
Kulhavy′
,
R.
, and
Kárny′
,
M.
,
1984
, “
Tracking of Slowly Varying Parameters by Directional Forgetting
,”
Proceedings of the IFAC World Congress
,
Budapest, Hangary
, July 2–6, pp.
687
692
.10.1016/S1474-6670(17)61051-6
12.
Cao
,
L.
, and
Schwartz
,
H.
,
2000
, “
A Directional Forgetting Algorithm Based on the Decomposition of the Information Matrix
,”
Automatica
,
36
(
11
), pp.
1725
1731
.10.1016/S0005-1098(00)00093-5
13.
Canetti
,
R. M.
, and
España
,
M. D.
,
1989
, “
Convergence Analysis of the Least-Squares Identification Algorithm With a Variable Forgetting Factor for Time-Varying Linear Systems
,”
Automatica
,
25
(
4
), pp.
609
612
.10.1016/0005-1098(89)90104-0
14.
Paleologu
,
C.
,
Benesty
,
J.
, and
Ciochina
,
S.
,
2008
, “
A Robust Variable Forgetting Factor Recursive Least-Squares Algorithm for System Identification
,”
IEEE Signal Process. Lett.
,
15
, pp.
597
600
.10.1109/LSP.2008.2001559
15.
Gunnarsson
,
S.
,
1996
, “
Combining Tracking and Regularization in Recursive Least Squares Identification
,”
Proceedings of the IEEE Conference on Decision and Control
,
Kobe, Japan
, Dec. 11–13, pp.
2551
2552
.10.1109/CDC.1996.573481
16.
Zhou
,
N.
,
Trudnowski
,
D. J.
,
Pierre
,
J. W.
, and
Mittelstadt
,
W. A.
,
2008
, “
Electromechanical Mode Online Estimation Using Regularized Robust RLS Methods
,”
IEEE Trans. Power Syst.
,
23
(
4
), pp.
1670
1680
.10.1109/TPWRS.2008.2002173
17.
Stenlund
,
B.
, and
Gustafsson
,
F.
,
2002
, “
Avoiding Windup in Recursive Parameter Estimation
,”
Prepr. Reglermöte
,
2002
, pp.
148
153
.https://people.isy.liu.se/rt/fredrik/reports/02reglermoteakf.pdf
18.
Evestedt
,
M.
, and
Medvedev
,
A.
,
2008
, “
Recursive Parameter Estimation by Means of the SG-Algorithm
,”
Proceedings of the IFAC World Congress
,
Seoul, Korea
, July 6–11, pp.
10081
10086
.10.3182/20080706-5-KR-1001.01706
19.
Marco
,
V. R.
,
Kalkkuhl
,
J. C.
,
Raisch
,
J.
, and
Seel
,
T.
,
2022
, “
Regularized Adaptive Kalman Filter for Non-Persistently Excited Systems
,”
Automatica
,
138
, p.
110147
.10.1016/j.automatica.2021.110147
20.
Lochrie
,
G.
,
Doljevic
,
M.
,
Nona
,
M.
, and
Yoon
,
Y.
,
2021
, “
Anti-Windup Recursive Least Squares Method for Adaptive Lookup Tables With Application to Automotive Powertrain Control Systems
,”
Proceedings of the Modeling, Estimation and Control Conference
,
Austin, TX
, Oct. 24–27, pp.
840
845
.10.1016/j.ifacol.2021.11.276
21.
MathMorks
, 2023, “
Adaptive Lookup Table
,” MathMorks, Natick, MA, accessed June 5, https://www.mathworks.com/help/sldo/ref/adaptivelookuptable2dstairfit.html
22.
Schär
,
C. M.
,
Onder
,
C. H.
,
Geering
,
H. P.
, and
Elsener
,
M.
,
2003
, “
Control of a Urea SCR Catalytic Converter System for a Mobile Heavy Duty Diesel Engine
,”
SAE Trans. J. Engines
,
112
(
3
), pp.
1180
1188
.10.4271/2003-01-0776
23.
Zhao
,
J.
,
Chen
,
Z.
,
Hu
,
Y.
, and
Chen
,
H.
,
2015
, “
Urea-SCR Process Control for Diesel Engine Using Feedforward-Feedback Nonlinear Method
,”
Proceedings of the IFAC Symposium on Advanced Control of Chemical Processes
,
Whistler, BC, Canada
, June 7–10, pp.
367
372
.10.1016/j.ifacol.2015.08.209
24.
Traver
,
M. L.
,
Atkinson
,
C. M.
, and
Atkinson
,
R. J.
,
1999
, “
A Neural Network-Based Virtual NOx Sensor for Diesel Engines
,”
Combustion
,
5
, pp.
7
9
.https://www.researchgate.net/profile/Christopher-Atkinson/publication/267837201_In-Cylinder_Combustion-Based_Virtual_Emissions_Sensing/links/58ea5f1b0f7e9b978f8408d1/In-Cylinder-Combustion-Based-Virtual-Emissions-Sensing.pdf
25.
Stadlbauer
,
S.
,
Alberer
,
D.
,
Hirsch
,
M.
,
Formentin
,
S.
,
Benatzky
,
C.
, and
del Re
,
L.
,
2012
, “
Evaluation of Virtual NOx Sensor Models for Off Road Heavy Duty Diesel Engines
,”
SAE Int. J. Commer. Veh.
,
5
(
1
), pp.
128
140
.10.4271/2012-01-0358
27.
McCarthy
,
J. E.
, Jr.
,
Zavala
,
B.
, and
Matheaus
,
A.
,
2023
, “
Technology Levers for Meeting 2027 NOx and CO2 Regulations
,”
SAE
Paper No. 2023-01-0354.10.4271/2023-01-0354
You do not currently have access to this content.