Abstract

Accurate control of a humanoid robot's global position (i.e., its three-dimensional (3D) position in the world) is critical to the reliable execution of high-risk tasks such as avoiding collision with pedestrians in a crowded environment. This paper introduces a time-based nonlinear control approach that achieves accurate global-position tracking (GPT) for multi-domain bipedal walking. Deriving a tracking controller for bipedal robots is challenging due to the highly complex robot dynamics that are time-varying and hybrid, especially for multi-domain walking that involves multiple phases/domains of full actuation, over actuation, and underactuation. To tackle this challenge, we introduce a continuous-phase GPT control law for multi-domain walking, which provably ensures the exponential convergence of the entire error state within the full and over actuation domains and that of the directly regulated error state within the underactuation domain. We then construct sufficient multiple-Lyapunov stability conditions for the hybrid multi-domain tracking error system under the proposed GPT control law. We illustrate the proposed controller design through both three-domain walking with all motors activated and two-domain gait with inactive ankle motors. Simulations of a ROBOTIS OP3 bipedal humanoid robot demonstrate the satisfactory accuracy and convergence rate of the proposed control approach under two different cases of multi-domain walking as well as various walking speed and desired paths.

References

1.
Zhao
,
H.
,
Hereid
,
A.
,
Ma
,
W-L.
, and
Ames
,
A. D.
,
2017
, “
Multi-Contact Bipedal Robotic Locomotion
,”
Robotica
,
35
(
5
), pp.
1072
1106
.10.1017/S0263574715000995
2.
Zhao
,
H.-H.
,
Ma
,
W.-L.
,
Ames
,
A. D.
, and
Zeagler
,
M. B.
,
2014
, “
Human-Inspired Multi-Contact Locomotion With AMBER2
,”
ACM/IEEE International Conference on Cyber-Physical Systems
(
ICCPS
), Berlin, Germany, Apr. 14–17, pp.
199
210
.10.1109/ICCPS.2014.6843723
3.
Ramezani
,
A.
,
Hurst
,
J. W.
,
Hamed
,
K. A.
, and
Grizzle
,
J. W.
,
2014
, “
Performance Analysis and Feedback Control of ATRIAS, A Three-Dimensional Bipedal Robot
,”
ASME J. Dyn. Syst. Meas. Control
,
136
(
2
), p.
021012
.10.1115/1.4025693
4.
Hereid
,
A.
,
Kolathaya
,
S.
,
Jones
,
M. S.
,
Van Why
,
J.
,
Hurst
,
J. W.
, and
Ames
,
A. D.
,
2014
, “
Dynamic Multi-Domain Bipedal Walking With Atrias Through SLIP Based Human-Inspired Control
,”
Proceedings of International Conference on Hybrid Systems: Computation and Control
, Berlin, Germany, Apr. 14–17, pp.
263
272
.10.1145/2562059.2562143
5.
Schwind
,
W. J.
,
1998
,
Spring Loaded Inverted Pendulum Running: A Plant Model
,
University of Michigan
, Ann Arbor, MI.
6.
Westervelt
,
E. R.
,
Chevallereau
,
C.
,
Choi
,
J. H.
,
Morris
,
B.
, and
Grizzle
,
J. W.
,
2007
,
Feedback Control of Dynamic Bipedal Robot Locomotion
,
CRC Press
, Boca Raton, FL.
7.
Reher
,
J.
,
Cousineau
,
E. A.
,
Hereid
,
A.
,
Hubicki
,
C. M.
, and
Ames
,
A. D.
,
2016
, “
Realizing Dynamic and Efficient Bipedal Locomotion on the Humanoid Robot DURUS
,”
IEEE International Conference on Robotics and Automation
, Stockholm, Sweden, May 16–21, pp.
1794
1801
.10.1109/ICRA.2016.7487325
8.
Hamed
,
K. A.
,
Ma
,
W.-L.
, and
Ames
,
A. D.
,
2019
, “
Dynamically Stable 3D Quadrupedal Walking With Multi-Domain Hybrid System Models and Virtual Constraint Controllers
,”
American Control Conference
(
ACC
), Philadelphia, PA, July 10–12, pp.
4588
4595
.10.23919/ACC.2019.8815085
9.
Hamed
,
K.
,
Safaee
,
B.
, and
Gregg
,
R. D.
,
2019
, “
Dynamic Output Controllers for Exponential Stabilization of Periodic Orbits for Multidomain Hybrid Models of Robotic Locomotion
,”
ASME J. Dyn. Syst. Meas. Control
,
141
(
12
), p.
121011
.10.1115/1.4044618
10.
Grizzle
,
J. W.
,
Abba
,
G.
, and
Plestan
,
F.
,
2001
, “
Asymptotically Stable Walking for Biped Robots: Analysis Via Systems With Impulse Effects
,”
IEEE Trans. Autom. Control
,
46
(
1
), pp.
51
64
.10.1109/9.898695
11.
Xiong
,
X.
,
Reher
,
J.
, and
Ames
,
A. D.
,
2021
, “
Global Position Control on Underactuated Bipedal Robots: Step-to-Step Dynamics Approximation for Step Planning
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Xi'an, China, May 30–June 5, pp.
2825
2831
.10.1109/ICRA48506.2021.9561961
12.
Xiong
,
X.
, and
Ames
,
A.
,
2022
, “
3-D Underactuated Bipedal Walking Via H-LIP Based Gait Synthesis and Stepping Stabilization
,”
IEEE Trans. Rob.
,
38
(
4
), pp.
2405
2425
.10.1109/TRO.2022.3150219
13.
Dai
,
M.
,
Lee
,
J.
, and
Ames
,
A. D.
,
2023
, “
Multi-Domain Walking With Reduced-Order Models of Locomotion
,” arXiv:2310.03179.
14.
Westervelt
,
E. R.
,
Grizzle
,
J. W.
, and
Koditschek
,
D. E.
,
2003
, “
Hybrid Zero Dynamics of Planar Biped Walkers
,”
IEEE Trans. Autom. Control
,
48
(
1
), pp.
42
56
.10.1109/TAC.2002.806653
15.
Sreenath
,
K.
,
Park
,
H.-W.
,
Poulakakis
,
I.
, and
Grizzle
,
J. W.
,
2011
, “
A Compliant Hybrid Zero Dynamics Controller for Stable, Efficient and Fast Bipedal Walking on MABEL
,”
Int. J. Rob. Res.
,
30
(
9
), pp.
1170
1193
.10.1177/0278364910379882
16.
Gong
,
Y.
,
Hartley
,
R.
,
Da
,
X.
,
Hereid
,
A.
,
Harib
,
O.
,
Huang
,
J.-K.
, and
Grizzle
,
J.
,
2019
, “
Feedback Control of a Cassie Bipedal Robot: Walking, Standing, and Riding a Segway
,”
American Control Conference
(
ACC
), Philadelphia, PA, July 10–12, pp.
4559
4566
.10.23919/ACC.2019.8814833
17.
Gu
,
Y.
,
Yao
,
B.
, and
Lee
,
C. G.
,
2016
, “
Bipedal Gait Recharacterization and Walking Encoding Generalization for Stable Dynamic Walking
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Stockholm, Sweden, May 16–21, pp.
1788
1793
.10.1109/ICRA.2016.7487324
18.
Gu
,
Y.
,
Yao
,
B.
, and
Lee
,
C. G.
,
2018
, “
Straight-Line Contouring Control of Fully Actuated 3-D Bipedal Robotic Walking
,” American Control Conference (
ACC
)
, Milwaukee, WI, June 27–29, pp.
2108
2113
.10.23919/ACC.2018.8431067
19.
Gu
,
Y.
,
Yao
,
B.
, and
Lee
,
C. G.
,
2017
, “
Time-Dependent Orbital Stabilization of Underactuated Bipedal Walking
,”
American Control Conference
(
ACC
), Seattle, WA, May 24–26, pp.
4858
4863
.10.23919/ACC.2017.7963707
20.
Gao
,
Y.
, and
Gu
,
Y.
,
2019
, “
Global-Position Tracking Control of a Fully Actuated NAO Bipedal Walking Robot
,”
American Control Conference
(
ACC
), Philadelphia, PA, July 10–12, pp.
4596
4601
.10.23919/ACC.2019.8815144
21.
Gu
,
Y.
, and
Yuan
,
C.
,
2020
, “
Adaptive Robust Trajectory Tracking Control of Fully Actuated Bipedal Robotic Walking
,” IEEE/ASME International Conference on Advanced Intelligent Mechatronics (
AIM
), Boston, MA, July 6–9, pp.
1310
1315
.10.1109/AIM43001.2020.9158814
22.
Gu
,
Y.
, and
Yuan
,
C.
,
2021
, “
Adaptive Robust Tracking Control for Hybrid Models of Three-Dimensional Bipedal Robotic Walking Under Uncertainties
,”
ASME J. Dyn. Syst. Meas. Control
,
143
(
8
), p.
081007
.10.1115/1.4050259
23.
Gu
,
Y.
,
Gao
,
Y.
,
Yao
,
B.
, and
Lee
,
C. G.
,
2022
, “
Global-Position Tracking Control for Three-Dimensional Bipedal Robots Via Virtual Constraint Design and Multiple Lyapunov Analysis
,”
ASME J. Dyn. Syst. Meas. Control
,
144
(
11
), p.
111001
.10.1115/1.4054732
24.
Iqbal
,
A.
, and
Gu
,
Y.
,
2021
, “
Extended Capture Point and Optimization-Based Control for Quadrupedal Robot Walking on Dynamic Rigid Surfaces
,”
IFAC-PapersOnLine
,
54
(
20
), pp.
72
77
.10.1016/j.ifacol.2021.11.155
25.
Iqbal
,
A.
,
Gao
,
Y.
, and
Gu
,
Y.
,
2020
, “
Provably Stabilizing Controllers for Quadrupedal Robot Locomotion on Dynamic Rigid Platforms
,”
IEEE/ASME Trans. Mechatron.
,
25
(
4
), pp.
2035
2044
.10.1109/TMECH.2020.2999900
26.
Iqbal
,
A.
,
Veer
,
S.
, and
Gu
,
Y.
,
2023
, “
Real-Time Walking Pattern Generation of Quadrupedal Dynamic-Surface Locomotion Based on a Linear Time-Varying Pendulum Model
,” arXiv:2301.03097.
27.
Gao
,
Y.
, and
Gu
,
Y.
,
2019
, “
Global-Position Tracking Control of Multi-Domain Planar Bipedal Robotic Walking
,”
ASME
Paper No. DSCC2019-9117.10.1115/DSCC2019-9117
28.
Bhounsule
,
P. A.
, and
Zamani
,
A.
,
2017
, “
A Discrete Control Lyapunov Function for Exponential Orbital Stabilization of the Simplest Walker
,”
ASME J. Mech. Rob.
,
9
(
5
), p.
051011
.10.1115/1.4037440
29.
Khalil
,
H. K.
,
1996
,
Nonlinear Systems
,
Prentice Hall
, New York.
30.
Chan
,
W. K.
,
Gu
,
Y.
, and
Yao
,
B.
,
2018
, “
Optimization of Output Functions With Nonholonomic Virtual Constraints in Underactuated Bipedal Walking Control
,”
Annual American Control Conference
(
ACC
), Milwaukee, WI, June 27–29, pp.
6743
6748
.10.23919/ACC.2018.8431152
31.
Branicky
,
M. S.
,
1998
, “
Multiple Lyapunov Functions and Other Analysis Tools for Switched and Hybrid Systems
,”
IEEE Trans. Autom. Control
,
43
(
4
), pp.
475
482
.10.1109/9.664150
32.
Khalil
,
H. K.
,
1996
,
Nonlinear Control
,
Prentice Hall
, New York.
33.
Gu
,
Y.
,
2017
, “
Time-Dependent Nonlinear Control of Bipedal Robotic Walking
,”
Ph.D. thesis
,
Purdue University
.https://docs.lib.purdue.edu/dissertations/AAI10615281/#:~:text=Both%20full%20actuation%20and%20underactuation,the%20number%20of%20independent%20actuators.
34.
Rijnen
,
M.
,
Biemond
,
J. B.
,
Van De Wouw
,
N.
,
Saccon
,
A.
, and
Nijmeijer
,
H.
,
2020
, “
Hybrid Systems With State-Triggered Jumps: Sensitivity-Based Stability Analysis With Application to Trajectory Tracking
,”
IEEE Trans. Autom. Control
,
65
(
11
), pp.
4568
4583
.10.1109/TAC.2019.2961996
35.
Rijnen
,
M.
,
van Rijn
,
A.
,
Dallali
,
H.
,
Saccon
,
A.
, and
Nijmeijer
,
H.
,
2016
, “
Hybrid Trajectory Tracking for a Hopping Robotic Leg
,”
IFAC-PapersOnLine
,
49
(
14
), pp.
107
112
.10.1016/j.ifacol.2016.07.993
36.
Gong
,
Y.
, and
Grizzle
,
J. W.
,
2022
, “
Zero Dynamics, Pendulum Models, and Angular Momentum in Feedback Control of Bipedal Locomotion
,”
ASME J. Dyn. Syst., Meas., Control
,
144
(
12
), p.
121006
.10.1115/1.4055770
37.
Reher
,
J. P.
,
Hereid
,
A.
,
Kolathaya
,
S.
,
Hubicki
,
C. M.
, and
Ames
,
A. D.
,
2020
, “
Algorithmic Foundations of Realizing Multi-Contact Locomotion on the Humanoid Robot DURUS
,”
Algorithmic Foundations of Robotics XII: Proceedings of the Twelfth Workshop on the Algorithmic Foundations of Robotics
,
San Francisco, CA, Dec. 18–20
, pp.
400
415
.10.1007/978-3-030-43089-4_26
38.
Yeatman
,
M.
,
Lv
,
G.
, and
Gregg
,
R. D.
,
2019
, “
Decentralized Passivity-Based Control With a Generalized Energy Storage Function for Robust Biped Locomotion
,”
ASME J. Dyn. Syst. Meas. Control
,
141
(
10
), p.
101007
.10.1115/1.4043801
39.
Hu
,
C.
,
Yao
,
B.
,
Wang
,
Q.
,
Chen
,
Z.
, and
Li
,
C.
,
2011
, “
Experimental Investigation on High-Performance Coordinated Motion Control of High-Speed Biaxial Systems for Contouring Tasks
,”
Int. J. Mach. Tools Manuf.
,
51
(
9
), pp.
677
686
.10.1016/j.ijmachtools.2011.06.001
40.
Liao
,
J.
,
Chen
,
Z.
, and
Yao
,
B.
,
2017
, “
High-Performance Adaptive Robust Control With Balanced Torque Allocation for the Over-Actuated Cutter-Head Driving System in Tunnel Boring Machine
,”
Mechatronics
,
46
, pp.
168
176
.10.1016/j.mechatronics.2017.08.007
41.
Yuan
,
M.
,
Chen
,
Z.
,
Yao
,
B.
, and
Liu
,
X.
,
2021
, “
Fast and Accurate Motion Tracking of a Linear Motor System Under Kinematic and Dynamic Constraints: An Integrated Planning and Control Approach
,”
IEEE Trans. Control Syst. Technol.
,
29
(
2
), pp.
804
811
.10.1109/TCST.2019.2955658
42.
Gao
,
Y.
,
Gong
,
Y.
,
Paredes
,
V.
,
Hereid
,
A.
, and
Gu
,
Y.
,
2023
, “
Time-Varying ALIP Model and Robust Foot-Placement Control for Underactuated Bipedal Robotic Walking on a Swaying Rigid Surface
,”
American Control Conference
(
ACC
), San Diego, CA, May 31–June 2, pp.
3282
3287
.10.23919/ACC55779.2023.10156254
43.
Iqbal
,
A.
,
Veer
,
S.
, and
Gu
,
Y.
,
2023
, “
Asymptotic Stabilization of Aperiodic Trajectories of a Hybrid-Linear Inverted Pendulum Walking on a Dynamic Rigid Surface
,”
American Control Conference
(
ACC
), San Diego, CA, May 31–June 2, pp.
3030
3035
.10.23919/ACC55779.2023.10156645
44.
Dai
,
M.
,
Xiong
,
X.
, and
Ames
,
A.
,
2022
, “
Bipedal Walking on Constrained Footholds: Momentum Regulation Via Vertical Com Control
,”
International Conference on Robotics and Automation
(
ICRA
), Philadelphia, PA, May 23–27, pp.
10435
10441
.10.1109/ICRA46639.2022.9812247
45.
Nguyen
,
Q.
,
Da
,
X.
,
Grizzle
,
J.
, and
Sreenath
,
K.
,
2020
, “
Dynamic Walking on Stepping Stones With Gait Library and Control Barrier Functions
,”
Algorithmic Foundations of Robotics XII: Proceedings of the Twelfth Workshop on the Algorithmic Foundations of Robotics
, San Francisco, CA, Dec. 18–20, pp.
384
399
.10.1007/978-3-030-43089-4_25
You do not currently have access to this content.