Abstract

Arctic remote sensing is crucial for studying and preserving the vulnerable Arctic environment. Researchers use ground penetrating radars (GPRs) to understand climate change and ice properties, but maneuvering a bulky GPR on the inhospitable Arctic terrain is difficult. Suspending the GPR from a drone can be a solution to operating a large GPR, however, proper control and stabilization of the drone-GPR system pose a challenge. In this paper, we contribute to the literature by analyzing the response of closed-loop feedback fractional-order and integer-order proportional-integral-derivative (PID) controllers at minimizing the payload sway for a drone-based cable-suspended payload system. Both controllers were tuned using particle swarm optimization and simulated to experience delays and external disturbances. Results indicate that both controllers had comparable time responses. The fractional-order controller was more robust to disturbances but was also sensitive to system delays. The findings of this study can be considered for future drone development.

References

1.
Palunko
,
I.
,
Cruz
,
P.
, and
Fierro
,
R.
,
2012
, “
Agile Load Transportation: Safe and Efficient Load Manipulation With Aerial Robots
,”
IEEE Rob. Autom. Mag.
,
19
(
3
), pp.
69
79
.10.1109/MRA.2012.2205617
2.
Barber
,
D.
,
2005
, “
Microwave Remote Sensing, Sea Ice and Arctic Climate
,”
Phys. Can.
,
61
, pp.
223
227
.
3.
Harasyn
,
M. L.
,
Isleifson
,
D.
,
Chan
,
W.
, and
Barber
,
D. G.
,
2020
, “
Multi-Scale Observations of the co-Evolution of Sea Ice Thermophysical Properties and Microwave Brightness Temperatures During the Summer Melt Period in Hudson Bay
,”
Elem.: Sci. Anth.
,
8
, p.
16
.10.1525/elementa.412
4.
Mattei
,
E.
,
Di Paolo
,
F.
,
Cosciotti
,
B.
,
Lauro
,
S. E.
,
Pettinelli
,
E.
,
Beaubien
,
S. E.
, and
Barber
,
D.
,
2017
, “
Young Sea Ice Electric Properties Estimation Under Non-Optimal Conditions
,” 9th International Workshop on Advanced Ground Penetrating Radar (
IWAGPR
), Edinburgh, UK, June 28–30, pp.
1
4
.10.1109/IWAGPR.2017.7996110
5.
Liu
,
H.
,
2013
, “
New Ground Penetrating Radar System for Quantitative Characterization of Snow and Sea Ice
,”
IET Conference Proceedings
, Xi’an, China, Apr. 14–16, p.
705
.10.1049/cp.2013.0122
6.
Gaffey
,
C.
, and
Bhardwaj
,
A.
,
2020
, “
Applications of Unmanned Aerial Vehicles in Cryosphere: Latest Advances and Prospects
,”
Remote Sens.
,
12
(
6
), p.
948
.10.3390/rs12060948
7.
He
,
X.
,
Kou
,
G.
,
Calaf
,
M.
, and
Leang
,
K. K.
,
2019
, “
In-Ground-Effect Modeling and Nonlinear-Disturbance Observer for Multirotor Unmanned Aerial Vehicle Control
,”
ASME J. Dyn. Syst., Meas., Control
,
141
(
7
), p.
071013
.10.1115/1.4043221
8.
Lee
,
T.
,
Sreenath
,
K.
, and
Kumar
,
V.
,
2013
, “
Geometric Control of Cooperating Multiple Quadrotor Uavs With a Suspended Payload
,”
52nd IEEE Conference on Decision and Control
, Firenze, Italy, Dec. 10–13, pp.
5510
5515
.10.1109/CDC.2013.6760757
9.
Mellinger
,
D.
,
Shomin
,
M.
,
Michael
,
N.
, and
Kumar
,
V.
,
2013
, “
Cooperative Grasping and Transport Using Multiple Quadrotors
,”
Distributed Autonomous Robotic Systems
,
Springer
,
Heidelberg, Germany
, pp.
545
558
.
10.
Sreenath
,
K.
,
Michael
,
N.
, and
Kumar
,
V.
,
2013
, “
Trajectory Generation and Control of a Quadrotor With a Cable-Suspended Load - a Differentially-Flat Hybrid System
,”
IEEE International Conference on Robotics and Automation
, Karlsruhe, Germany, May 6–10, pp.
4888
4895
.10.1109/ICRA.2013.6631275
11.
Palunko
,
I.
,
Fierro
,
R.
, and
Cruz
,
P.
,
2012
, “
Trajectory Generation for Swing-Free Maneuvers of a Quadrotor With Suspended Payload: A Dynamic Programming Approach
,”
IEEE International Conference on Robotics and Automation
, Saint Paul, MN, May 14–18, pp.
2691
2697
.10.1109/ICRA.2012.6225213
12.
Sreenath
,
K.
, and
Kumar
,
V.
,
2013
, “
Dynamics, Control and Planning for Cooperative Manipulation of Payloads Suspended by Cables From Multiple Quadrotor Robots
,”
Robotics: Science and Systems
, Berlin, Germany, June 24–28, pp.
1
8
.10.15607/RSS.2013.IX.011
13.
Martinez-Vasquez
,
A.
,
Castro-Linares
,
R.
, and
Rodriguez-Mata
,
A.
,
2020
, “
Sliding Mode Control of a Quadrotor With Suspended Payload: A Differential Flatness Approach
,” 17th International Conference on Electrical Engineering, Computing Science and Automatic Control (
CCE
), Mexico, Nov. 11–13, pp.
1
6
.10.1109/CCE50788.2020.9299140
14.
Kui
,
Y.
,
Feng
,
G.
,
Liying
,
Y.
,
Yuqing
,
H.
, and
Jian-da
,
H.
,
2017
, “
Sliding Mode Control for a Quadrotor Slung Load System
,” 36th Chinese Control Conference (
CCC
), Dalian, China, July 26–28, pp.
3697
3703
.10.23919/ChiCC.2017.8027934
15.
Chandra
,
A.
, and
Lal
,
P. P.
,
2022
, “
Higher Order Sliding Mode Controller for a Quadrotor UAV With a Suspended Load
,”
Int. Fed. Autom. Control
,
55
(
1
), pp.
610
615
.10.1016/j.ifacol.2022.04.100
16.
Bingöl
,
Ö.
, and
Güzey
,
H. M.
,
2022
, “
Finite-Time Neuro-Sliding-Mode Controller Design for Quadrotor Uavs Carrying Suspended Payload
,”
Drones
,
6
(
10
), p.
311
.10.3390/drones6100311
17.
Bingöl
,
Ö.
, and
Guzey
,
H. M.
,
2019
, “
Sliding Mode Control for a Quadrotor Uav Transporting a Cable-Suspended Payload
,”
Proceedings of 14th International Conference on Electromechanics and Robotics “Zavalishin's Readings”
, Kursk, Russia, Apr. 17–20, pp.
289
303
.10.1007/978-981-13-9267-2_24
18.
Mosco-Luciano
,
A.
,
Castro-Linares
,
R.
, and
Rodríguez-Cortés
,
H.
,
2020
, “
Trajectory Tracking Control for a Quadrotor With a Slung Load
,” International Conference on Unmanned Aircraft Systems (
ICUAS
), Athens, Greece, Sept. 1–4, pp.
322
328
.10.1109/ICUAS48674.2020.9213853
19.
de Angelis
,
E. L.
,
2019
, “
Swing Angle Estimation for Multicopter Slung Load Applications
,”
Aerosp. Sci. Technol.
,
89
, pp.
264
274
.10.1016/j.ast.2019.04.014
20.
Liang
,
X.
,
Fang
,
Y.
,
Sun
,
N.
, and
Lin
,
H.
,
2018
, “
Nonlinear Hierarchical Control for Unmanned Quadrotor Transportation Systems
,”
IEEE Trans. Ind. Electron.
,
65
(
4
), pp.
3395
3405
.10.1109/TIE.2017.2752139
21.
Yang
,
S.
, and
Xian
,
B.
,
2020
, “
Energy-Based Nonlinear Adaptive Control Design for the Quadrotor Uav System With a Suspended Payload
,”
IEEE Trans. Ind. Electron.
,
67
(
3
), pp.
2054
2064
.10.1109/TIE.2019.2902834
22.
Faust
,
A.
,
Palunko
,
I.
,
Cruz
,
P.
,
Fierro
,
R.
, and
Tapia
,
L.
,
2017
, “
Automated Aerial Suspended Cargo Delivery Through Reinforcement Learning
,”
Artif. Intell.
,
247
, pp.
381
398
.10.1016/j.artint.2014.11.009
23.
Palunko
,
I.
,
Faust
,
A.
,
Cruz
,
P.
,
Tapia
,
L.
, and
Fierro
,
R.
,
2013
, “
A Reinforcement Learning Approach Towards Autonomous Suspended Load Manipulation Using Aerial Robots
,”
IEEE International Conference on Robotics and Automation
, Karlsruhe, Germany, May 6–10, pp.
4896
4901
.10.1109/ICRA.2013.6631276
24.
Shastry
,
A. K.
,
Pattanaik
,
A.
, and
Kothari
,
M.
,
2016
, “
Neuro-Adaptive Augmented Dynamic Inversion Controller for Quadrotors
,”
IFAC-PapersOnLine
,
49
(
1
), pp.
302
307
.10.1016/j.ifacol.2016.03.070
25.
Faust
,
A.
,
Palunko
,
I.
,
Cruz
,
P.
,
Fierro
,
R.
, and
Tapia
,
L.
,
2013
, “
Learning Swing-Free Trajectories for UAVs With a Suspended Load
,”
IEEE International Conference on Robotics and Automation
, Karlsruhe, Germany, May 6–10, pp.
4902
4909
.10.1109/ICRA.2013.6631277
26.
Raimúndez
,
C.
, and
Camaño
,
J. L.
,
2015
, “
Transporting Hanging Loads Using a Scale Quad-Rotor
,”
CONTROLO'2014 – Proceedings of the 11th Portuguese Conference on Automatic Control
,
A. P.
Moreira
,
A.
Matos
, and
G.
Veiga
, eds.,
Springer International Publishing
,
Cham, Switzerland
, pp.
471
482
.
27.
Alothman
,
Y.
,
Jasim
,
W.
, and
Gu
,
D.
,
2015
, “
Quad-Rotor Lifting-Transporting Cable-Suspended Payloads Control
,” 21st International Conference on Automation and Computing (
ICAC
), Glasgow, UK, Sept. 11–12, pp.
1
6
.10.1109/IConAC.2015.7313996
28.
Estevez
,
J.
,
Lopez-Guede
,
J. M.
,
Garate
,
G.
, and
Graña
,
M.
,
2021
, “
A Hybrid Control Approach for the Swing Free Transportation of a Double Pendulum With a Quadrotor
,”
Appl. Sci.
,
11
(
12
), p.
5487
.10.3390/app11125487
29.
Tejado
,
I.
,
Vinagre
,
B. M.
,
Traver
,
J. E.
,
Prieto-Arranz
,
J.
, and
Nuevo-Gallardo
,
C.
,
2019
, “
Back to Basics: Meaning of the Parameters of Fractional Order Pid Controllers
,”
Mathematics
,
7
(
6
), p.
530
.10.3390/math7060530
30.
Zhai
,
R.
,
Zhou
,
Z.
,
Zhang
,
W.
,
Sang
,
S.
, and
Li
,
P.
,
2014
, “
Control and Navigation System for a Fixed-Wing Unmanned Aerial Vehicle
,”
AIP Adv.
,
4
(
3
), p.
031306
.10.1063/1.4866169
31.
Goodarzi
,
F. A.
, and
Lee
,
T.
,
2016
, “
Stabilization of a Rigid Body Payload With Multiple Cooperative Quadrotors
,”
ASME J. Dyn. Syst., Meas., Control
,
138
(
12
), p.
121001
.10.1115/1.4033945
32.
Dulău
,
M.
,
Gligor
,
A.
, and
Dulău
,
T.-M.
,
2017
, “
Fractional Order Controllers Versus Integer Order Controllers
,”
10th International Conference Interdisciplinarity in Engineering
, Tirgu Mures, Romania, Oct. 6–7, pp.
538
545
.10.1016/j.proeng.2017.02.431
33.
Nasri
,
M. T.
, and
Kinsner
,
W.
,
2014
, “
An Evaluation of Integer- and Fractional-Order Controllers for Small Satellites
,”
IEEE 13th International Conference on Cognitive Informatics and Cognitive Computing
, London, UK, Aug. 18–20, pp.
30
38
.10.1109/ICCI-CC.2014.6921437
34.
Ertürk
,
V. S.
,
Odibat
,
Z. M.
, and
Momani
,
S.
,
2011
, “
An Approximate Solution of a Fractional Order Differential Equation Model of Human T-Cell Lymphotropic Virus I (HTLV-I) Infection of CD4+ T-Cells
,”
Comput. Math. Appl.
,
62
(
3
), pp.
996
1002
.10.1016/j.camwa.2011.03.091
35.
Gafiychuk
,
V.
,
Datsko
,
B.
, and
Meleshko
,
V.
,
2008
, “
Mathematical Modeling of Time Fractional Reaction–Diffusion Systems
,”
J. Comput. Appl. Math.
,
220
(
1–2
), pp.
215
225
.10.1016/j.cam.2007.08.011
36.
Ezzat
,
M. A.
,
2011
, “
Theory of Fractional Order in Generalized Thermoelectric MHD
,”
Appl. Math. Modell.
,
35
(
10
), pp.
4965
4978
.10.1016/j.apm.2011.04.004
37.
Muñoz-Vázquez
,
A. J.
,
Parra-Vega
,
V.
,
Sánchez-Orta
,
A.
, and
Romero-Galván
,
G.
,
2018
, “
Fractional PD-IλDμ Error Manifolds for Robust Tracking Control of Robotic Manipulators
,”
ASME J. Dyn. Syst., Meas., Control
,
141
(
3
), p.
031006
.10.1115/1.4041605
38.
Müller
,
S.
,
Kästner
,
M.
,
Brummund
,
J.
, and
Ulbricht
,
V.
,
2011
, “
A Nonlinear Fractional Viscoelastic Material Model for Polymers
,”
Comput. Mater. Sci.
,
50
(
10
), pp.
2938
2949
.10.1016/j.commatsci.2011.05.011
39.
Jiahe
,
F.
, and
Rui
,
L.
,
2015
, “
Fractional PID and Backstepping Control for a Small Quadrotor Helicopter
,” 34th Chinese Control Conference (
CCC
), Hangzhou, China, July 28–30, pp.
5701
5706
.10.1109/ChiCC.2015.7260530
40.
Efe
,
M.
,
2008
, “
Fractional Fuzzy Adaptive Sliding-Mode Control of a 2-DOF Direct-Drive Robot Arm
,”
IEEE Trans. Syst., Man, Cybern., Part B (Cybern.)
,
38
(
6
), pp.
1561
1570
.10.1109/TSMCB.2008.928227
41.
Efe
,
M.
,
2011
, “
Battery Power Loss Compensated Fractional Order Sliding Mode Control of a Quadrotor UAV
,”
Asian J. Control
,
14
(
2
), pp.
413
425
.10.1002/asjc.340
42.
Chao
,
H.
,
Luo
,
Y.
,
Di
,
L.
, and
Chen
,
Y.
,
2010
, “
Roll-Channel Fractional Order Controller Design for a Small Fixed-Wing Unmanned Aerial Vehicle
,”
Control Eng. Pract.
,
18
(
7
), pp.
761
772
.10.1016/j.conengprac.2010.02.003
43.
Cajo
,
R.
,
Mac
,
T. T.
,
Plaza
,
D.
,
Copot
,
C.
,
De Keyser
,
R.
, and
Ionescu
,
C.
,
2019
, “
A Survey on Fractional Order Control Techniques for Unmanned Aerial and Ground Vehicles
,”
IEEE Access
,
7
, pp.
66864
66878
.10.1109/ACCESS.2019.2918578
44.
Vahdanipour
,
M.
, and
Khodabandeh
,
M.
,
2019
, “
Adaptive Fractional Order Sliding Mode Control for a Quadrotor With a Varying Load
,”
Aerosp. Sci. Technol.
,
86
, pp.
737
747
.10.1016/j.ast.2019.01.053
45.
Luo
,
Y.
,
Chao
,
H.
,
Di
,
L.
, and
Chen
,
Y.
,
2011
, “
Lateral Directional Fractional Order (pi) Control of a Small Fixed-Wing Unmanned Aerial Vehicles: Controller Designs and Flight Tests
,”
IET Control Theory Appl.
,
5
(
18
), pp.
2156
2167
.10.1049/iet-cta.2010.0314
46.
Aboelela
,
M. A.
,
Ahmed
,
M. F.
, and
Dorrah
,
H. T.
,
2012
, “
Design of Aerospace Control Systems Using Fractional Pid Controller
,”
J. Adv. Res.
,
3
(
3
), pp.
225
232
.10.1016/j.jare.2011.07.003
47.
Suárez
,
J. I.
,
Vinagre
,
B. M.
,
Calderón
,
A. J.
,
Monje
,
C. A.
, and
Chen
,
Y. Q.
,
2003
, “
Using Fractional Calculus for Lateral and Longitudinal Control of Autonomous Vehicles
,”
Computer Aided Systems Theory - EUROCAST 2003
,
R.
Moreno-Díaz
, and
F.
Pichler
, eds.,
Springer
,
Berlin, Heidelberg
, pp.
337
348
.
48.
Al-Dhaifallah
,
M.
,
Al-Qahtani
,
F. M.
,
Elferik
,
S.
, and
Saif
,
A.-W. A.
,
2023
, “
Quadrotor Robust Fractional-Order Sliding Mode Control in Unmanned Aerial Vehicles for Eliminating External Disturbances
,”
Aerospace
,
10
(
8
), p.
665
.10.3390/aerospace10080665
49.
AlAli
,
A.
,
Fareh
,
R.
,
Sinan
,
S.
, and
Bettayeb
,
M.
,
2021
, “
Control of Quadcopter Drone Based on Fractional Active Disturbances Rejection Control
,” 14th International Conference on Developments in eSystems Engineering (
DeSE
), Sharjah, United Arab Emirates, Dec. 7–10, pp.
180
185
.10.1109/DeSE54285.2021.9719407
50.
Valavanis
,
K. P.
, and
Vachtsevanos
,
G. J.
,
2014
,
Handbook of Unmanned Aerial Vehicles
,
Springer Publishing Company, Incorporated
,
Dordrecht, The Netherlands
.
51.
Patel
,
M. S.
, and
Ferguson
,
P. A.
,
2022
, “
Drone-Based Cable-Suspended Payload Tracking and Estimation Using Simulated Lidar Measurements and an Extended Kalman Filter
,”
AIAA
Paper No. 2022-2290.10.2514/6.2022-2290
52.
de Oliveira
,
E. C.
, and
Machado
,
J. A. T.
,
2014
, “
A Review of Definitions for Fractional Derivatives and Integral
,”
Math. Probl. Eng.
,
2014
(
6
), pp.
1
6
.10.1155/2014/238459
53.
Podlubny
,
I.
,
Petráš
,
I.
,
Vinagre
,
B. M.
,
O'Leary
,
P.
, and
Dorčák
,
Ľ.
,
2002
, “
Analogue Realizations of Fractional-Order Controllers
,”
Nonlinear Dyn.
,
29
(
1/4
), pp.
281
296
.10.1023/A:1016556604320
54.
Deniz
,
F. N.
,
Alagoz
,
B. B.
,
Tan
,
N.
, and
Koseoglu
,
M.
,
2020
, “
Revisiting Four Approximation Methods for Fractional Order Transfer Function Implementations: Stability Preservation, Time and Frequency Response Matching Analyses
,”
Annu. Rev. Control
,
49
, pp.
239
257
.10.1016/j.arcontrol.2020.03.003
55.
Jain
,
S.
, and
Hote
,
Y. V.
,
2023
, “
Predictive Generalized Active Disturbance Rejection Control for Fractional Order Systems With Time Delay
,”
ASME J. Dyn. Syst., Meas., Control
,
145
(
7
), p.
071003
.10.1115/1.4062512
56.
Batiha
,
I. M.
,
Ababneh
,
O. Y.
,
Al-Nana
,
A. A.
,
Alshanti
,
W. G.
,
Alshorm
,
S.
, and
Momani
,
S.
,
2023
, “
A Numerical Implementation of Fractional-Order PID Controllers for Autonomous Vehicles
,”
Axioms
,
12
(
3
), p.
306
.10.3390/axioms12030306
57.
Emad
,
S.
,
Hassanein
,
A. M.
,
AbdelAty
,
A. M.
,
Madian
,
A. H.
,
Radwan
,
A. G.
, and
Said
,
L. A.
,
2024
, “
A Study on Fractional Power-Law Applications and Approximations
,”
Electronics
,
13
(
3
), p.
591
.10.3390/electronics13030591
58.
Vinagre
,
B.
,
Podlubny
,
I.
,
Hernandez
,
A.
, and
Feliu
,
V.
,
2000
, “
Some Approximations of Fractional Order Operators Used in Control Theory and Applications
,”
Fract. Calc. Appl. Anal.
,
3
(
3
), pp.
231
248
.http://www.math.bas.bg/~fcaa/volume3/n3/jpodl-1.pdf
59.
Babu
,
F. A. G. S.
, and
Chiranjeevi
,
S. B. T.
,
2016
, “
Implementation of Fractional Order PID Controller for an AVR System Using GA and ACO Optimization Techniques
,”
IFAC-PapersOnLine
,
49
(
1
), pp.
456
461
.10.1016/j.ifacol.2016.03.096
60.
Faieghi
,
M. R.
, and
Nemati
,
A.
,
2011
, “
On Fractional-Order PID Design
,”
Applications of MATLAB in Science and Engineering
,
T.
Michałowski
, ed.,
IntechOpen
,
Rijeka
, p.
13
.
61.
Wang
,
D.
,
Tan
,
D.
, and
Liu
,
L.
,
2018
, “
Particle Swarm Optimization Algorithm: An Overview
,”
Soft Comput.
,
22
(
2
), pp.
387
408
.10.1007/s00500-016-2474-6
62.
Yang
,
S.
, and
Xian
,
B.
,
2020
, “
Exponential Regulation Control of a Quadrotor Unmanned Aerial Vehicle With a Suspended Payload
,”
IEEE Trans. Control Syst. Technol.
,
28
(
6
), pp.
2762
2769
.10.1109/TCST.2019.2952826
63.
Xian
,
B.
, and
Yang
,
S.
,
2021
, “
Robust Tracking Control of a Quadrotor Unmanned Aerial Vehicle-Suspended Payload System
,”
IEEE/ASME Trans. Mechatron.
,
26
(
5
), pp.
2653
2663
.10.1109/TMECH.2020.3044183
64.
Fiuzy
,
M.
, and
Shamaghdari
,
S.
,
2022
, “
Stability Analysis of Fractional-Order Linear System With PID Controller in the Output Feedback Structure Subject to Input Saturation
,”
Int. J. Dyn. Control
,
10
(
2
), pp.
511
524
.10.1007/s40435-021-00823-2
65.
Shalaby
,
R.
,
El-Hossainy
,
M.
,
Abo-Zalam
,
B.
, and
Mahmoud
,
T. A.
,
2023
, “
Optimal Fractional-Order PID Controller Based on Fractional-Order Actor-Critic Algorithm
,”
Neural Comput. Appl.
,
35
(
3
), pp.
2347
2380
.10.1007/s00521-022-07710-7
66.
Ge
,
M.
, and
Song
,
Q.
,
2022
, “
Fractional-Order Control of High Speed Train With Actuator Complete Failure
,”
IEEE Trans. Intell. Transp. Syst.
,
23
(
11
), pp.
21665
21674
.10.1109/TITS.2022.3190402
67.
Lee
,
J.-H.
,
2009
, “
A New PID Controller With Lyapunov Stability for Regulation Servo Systems
,”
J. IKEEE
,
13
(
1
), p.
01
.https://www.researchgate.net/publication/264115802_A_New_PID_Controller_with_Lyapunov_Stability_for_Regulation_Servo_Systems
68.
Ali
,
M.
,
Aamir
,
M.
,
Khan
,
H. S.
,
Waqar
,
A.
,
Haroon
,
F.
, and
Jafri
,
A. R.
,
2018
, “
Lyapunov Stability and Performance Analysis of the Fractional Order Sliding Mode Control for a Parallel Connected Ups System Under Unbalanced and Nonlinear Load Conditions
,”
Energies
,
11
(
12
), p.
3475
.10.3390/en11123475
69.
Ray
,
L. R.
, and
Stengel
,
R. F.
,
1993
, “
A Monte Carlo Approach to the Analysis of Control System Robustness
,”
Automatica
,
29
(
1
), pp.
229
236
.10.1016/0005-1098(93)90187-X
You do not currently have access to this content.