Abstract

Kω2 control, also called torque control, is a popular method for maximizing wind turbine power. For hydrostatic wind turbines, torque control becomes pressure control with pc = K′ω2 because pressure is proportional to torque. Inverse Kω2 control is an alternative approach using rotor speed control with ωc = (p/K′)1/2. This work analyzes the dynamics of hydrostatic wind turbines using forward and inverse Kω2 control with P-, proportional derivative, proportional integral, and proportional integral derivative-control for feedback. Dimensionless, linearized models are used. Analysis shows that the mechanical rotor dynamics are much slower than the hydrostatic transmission dynamics and that frictional and leakage losses are negligible. Linear perturbation of the nonlinear model reveals that the closed-loop control is not in Evan's form so that closed-loop poles and zeros both vary with the loop gain. Pole and zero root locus analysis shows how systems responses change with controller gains. Both control approaches require derivative controller action to sufficiently dampen their responses; both are also fundamentally limited in speed of response by a slow stable pole regardless of controller loop gains. Nonlinear system simulation shows that both control approaches track the maximum power point with nearly identical transient behavior and have nearly identical power losses when using suboptimal values of the control law gain, K. Pressure control has a gain margin of infinity and a phase margin of 99.3 deg, while speed control has a gain margin of 22.4 dB and a phase margin of 73.8 deg showing that pressure control is more robust than speed control. Experiments using the power regenerative hydrostatic test stand at the University of Minnesota show that the control approaches have different transient responses but capture comparable power under steady and turbulent conditions.

References

1.
U.S. Department of Energy
,
2022
, “
Wind Technologies Market Report
,” ENERGY, Washington, DC, accessed May 15, 2024, https://www.energy.gov/eere/wind/wind-market-reports-2022-edition
2.
Yin
,
X.
,
Zhang
,
W.
, and
Zhao
,
X.
,
2019
, “
Current Status and Future Prospects of Continuously Variable Speed Wind Turbines: A Systematic Review
,”
Mech. Syst. Signal Process.
,
120
, pp.
326
340
.10.1016/j.ymssp.2018.05.063
3.
Mohanty
,
B.
, and
Stelson
,
K. A.
,
2022
, “
Experimental Validation of a Hydrostatic Transmission for Community Wind Turbines
,”
Energies
,
15
(
1
), p.
376
.10.3390/en15010376
4.
Chen
,
W.
,
Wang
,
X.
,
Zhang
,
F.
,
Liu
,
H.
, and
Lin
,
Y.
,
2020
, “
Review of the Application of Hydraulic Technology in Wind Turbine
,”
Wind Energy
,
23
(
7
), pp.
1495
1522
.10.1002/we.2506
5.
Chapple
,
P. J.
,
Niss
,
M.
, and
Thomsen
,
K. E.
,
2012
, “
Wind Turbines With Variable Hydraulic Transmission, and Electrically Excited Synchronous Generators Directly Connected to the Grid
,”
Proceedings of the ASME/Bath Symposium on Fluid Power and Motion Control, D. N. Johnston and A. Plummer, eds., Bath, UK, Sept. 12–14, pp. 579–592.
6.
Rampen
,
W.
,
Dumnov
,
D.
,
Taylor
,
J.
,
Dodson
,
H.
,
Hutcheson
,
J.
, and
Caldwell
,
N.
,
2021
, “
A Digital Displacement Hydrostatic Wind-Turbine Transmission
,”
Int. J. Fluid Power
,
22
(
1
), pp.
87
112
.10.13052/ijfp1439-9776.2213
7.
Dvorak
,
P.
,
2013
, “
Hello Sea Angel: Hydraulic Drive Train Could Provide 7 MW Offshore Turbine
,”
Wind Power Engineering and Development
, WTWH Media, LLC, Cleveland, OH.
8.
Schmitz
,
J.
,
Vukovic
,
M.
, and
Murrenhoff
,
H.
,
2013
, “
Hydrostatic Transmission for Wind Turbines – An Old Concept, New Dynamics
,”
ASME
Paper No. FPMC2013-444910.1115/FPMC2013-4449.
9.
Mohanty
,
B.
, and
Stelson
,
K. A.
,
2022
, “
Dynamics and Control of an Energy-Efficient, Power-Regenerative, Hydrostatic Wind Turbine Dynamometer
,”
Energies
,
15
(
8
), p.
2868
.10.3390/en15082868
10.
Manwell
,
J. F.
,
McGowan
,
J. G.
, and
Rogers
,
A. L.
,
2009
,
Wind Energy Explained
, 2nd ed.,
Wiley Ltd
.,
West Sussex, UK
.
11.
Chao
,
A.
,
Zhang
,
L.
,
Gao
,
W.
,
Yang
,
G.
,
Wu
,
D.
,
Chen
,
L.
,
Chen
,
W.
, and
Plummer
,
A.
,
2022
, “
A Review of Energy Storage Technologies in Hydraulic Wind Turbines
,”
Energy Convers. Manage.
,
264
, p.
115584
.10.1016/j.enconman.2022.115584
12.
Fan
,
Y.
,
Mu
,
A.
, and
Ma
,
T.
,
2016
, “
Study on Application of Energy Storage System in Offshore Wind System With Hydraulic Transmission
,”
Energy Convers. Manage.
,
110
, pp.
338
346
.10.1016/j.enconman.2015.12.033
13.
Wei
,
L.
,
Liu
,
Z.
,
Zhao
,
Y.
,
Wang
,
G.
, and
Tao
,
Y.
,
2018
, “
Modeling and Control of a 600 kW Closed Hydraulic Wind Turbine With and Energy Storage System
,”
Appl. Sci.
,
8
(
8
), p.
1314
.10.3390/app8081314
14.
Do
,
H. T.
, and
Ahn
,
K. K.
,
2013
, “
A Study of Energy Conversion System by a Secondary Control Hydrostatic Transmission
,”
J. Korean Soc. Fluid Power Constr. Equip.
,
10
(
1
), pp.
21
28
.10.7839/KSFC.2013.10.1.021
15.
Mohr
,
E. B.
,
Mohanty
,
B.
, and
Stelson
,
K. A.
,
2020
, “
Short-Term Energy Storage System for Hydraulic Hybrid Wind Turbine Transmission
,”
ASME
Paper No. FPMC2020-277710.1115/FPMC2020-2777.
16.
Betz
,
A.
,
1966
,
Introduction to the Theory of Flow Machines
, 1st ed.,
Pergamon Press Ltd
.,
London, UK
.
17.
Mohanty
,
B.
, and
Stelson
,
K. A.
,
2018
, “
High Fidelity Dynamic Modeling and Control of Power Regenerative Hydrostatic Wind Turbine Test Platform
,”
ASME
Paper No. FPMC2018-890010.1115/FPMC2018-8900.
18.
Pao
,
L.
, and
Johnson
,
K.
,
2009
, “
A Tutorial on the Dynamics and Control of Wind Turbines and Wind Farms
,”
2009 IEEE American Control Conference
,
St. Louis, MO
, June 10–12, pp.
2076
2089
.10.1109/ACC.2009.5160195
19.
Leithead
,
W.
,
1989
, “
Variable Speed Operation – Does It Have Any Advantages?
,”
Wind Eng.
,
13
(
6
), pp.
302
314
.https://www.jstor.org/stable/43749401
20.
Leithead
,
W.
,
1989
, “
Control Systems for Wind Turbines
,”
Wind Eng.
,
13
(
6
), pp.
293
301
.https://www.jstor.org/stable/43749400
21.
Escobar-Naranjo
,
D.
,
Mohanty
,
B.
, and
Stelson
,
K. A.
,
2021
, “
Using Extremum Seeking Control to Improve the Power Capture of Midsize Hydrostatic Wind Turbines
,”
ASME
Paper No. FPMC2021-6805810.1115/FPMC2021-68058.
22.
Chapple
,
P.
, and
Niss
,
M.
,
2012
, “
A Wind Turbine With Hydrostatic Transmission and LVRT Control
,” European Patent No. EP2481917A1.
23.
Escobar-Naranjo
,
D.
,
Mohanty
,
B.
, and
Stelson
,
K. A.
,
2022
, “
Experimental Validation of Extremum Seeking Control for a Midsize Hydrostatic Transmission Wind Turbine
,”
ASME
Paper No. FPMC2022-8896710.1115/FPMC2022-88967.
24.
Johnson
,
K.
,
Pao
,
L.
,
Balas
,
M.
, and
Fingersh
,
L.
,
2006
, “
Control of Variable-Speed Wind Turbines: Standard and Adaptive Techniques for Maximizing Energy Capture
,”
IEEE Control Syst.
,
26
(
3
), pp.
70
81
.10.1109/MCS.2006.1636311
25.
Lin
,
S.
,
Qi
,
P.
, and
Zhao
,
X.
,
2020
, “
Power Generation Control of a Hydrostatic Wind Turbine Implemented by Model-Free Adaptive Control Scheme
,”
Wind Energy
,
23
(
4
), pp.
849
863
.10.1002/we.2437
26.
Han
,
B.
, and
Gao
,
H.
,
2022
, “
Linear Parameter-Varying Model Predictive Control for Hydraulic Wind Turbine
,”
Actuators
,
11
(
10
), pp.
292
308
.10.3390/act11100292
27.
Kumar
,
N.
,
Venkaiah
,
P.
,
Sarkar
,
B. K.
, and
Maity
,
S.
,
2023
, “
Wind Turbine Electrohydraulic Transmission System Control for Maximum Power Tracking With Pump Fault
,”
Proc. Inst. Mech. Eng., Part I
,
237
(
9
), pp.
1702
1716
.10.1177/09596518231155691
28.
Rajabhandharaks
,
D.
,
2014
, “
Control of Hydrostatic Transmission Wind Turbine
,” M.S. thesis,
San Jose State University
,
San Jose, CA
.
29.
Franklin
,
G. F.
,
Powell
,
D.
, and
Emami-Naeini
,
A.
,
2014
,
Feedback Control of Dynamic Systems
, 7th ed.,
Pearson
,
Upper Saddle River, NJ
.
30.
Laguna
,
A. J.
,
Diepeveen
,
N. F. B.
, and
van Wingerden
,
J. W.
,
2014
, “
Analysis of Dynamics of Fluid Power Drives for Variable Speed Wind Turbines: Parameter Study
,”
Inst. Energy Technol.: Renewable Power Gener.
,
8
(
4
), pp.
398
410
.10.1049/iet-rpg.2013.0134
31.
Skaare
,
B.
,
Hornsten
,
B.
, and
Nielsen
,
F. G.
,
2013
, “
Modeling, Simulation and Control of a Wind Turbine With a Hydraulic Transmission System
,”
Wind Energy
,
16
(
8
), pp.
1259
1276
.10.1002/we.1552
32.
Leinberger
,
M.
,
2023
, “
Analysis, Simulation, and Experiments of Dynamics and Control of a Hydrostatic Wind Turbine
,”
M.S. thesis
,
University of Minnesota
,
Minneapolis, MN
.https://conservancy.umn.edu/server/api/core/bitstreams/ff92a7bb-c017-4315-b200-8e005653db3a/content
33.
Mohanty
,
B.
,
Dhople
,
S.
, and
Stelson
,
K. A.
,
2019
, “
A Dynamical Model for a Hydrostatic Wind Turbine Transmission Coupled to the Grid With a Synchronous Generator
,”
Proceedings of the 2019 American Control Conference
,
Philadelphia, PA
, July 10–12, pp.
5774
5779
.
34.
Polaris
, 2024, “
Polaris America
,” Polaris, Allenwood, NJ, accessed May 15, 2024, http://www.polarisamerica.com/
35.
Hahn
,
W.
,
1967
,
Stability of Motion
, Vol.
138
,
Grundlehren Der Mathematischen
: GL, Springer, New York.10.1007/978-3-642-50085-5
36.
Evans
,
W. R.
,
1950
, “
Control System Synthesis by Root Locus Method
,”
Am. Inst. Electr. Eng. Trans.
,
69
(
1
), pp.
66
69
.10.1109/T-AIEE.1950.5060121
37.
Stone
,
N.
,
2022
, “
EOLOS Educational Data Set: An Overview
,” accessed Oct. 17, http://eolos.umn.edu/sites/eolos.dl.umn.edu/files/general/eolos_educational_data_set.pdf
You do not currently have access to this content.