Abstract

This study presents a novel approach to optimal control utilizing a Koopman operator integrated with a linear quadratic regulator (LQR) to enhance the thermal management and power output efficiency of an open-cathode proton exchange membrane fuel cell (PEMFC) stack. First, a linear time-invariant dynamic model was derived through Koopman operator to forecast the behavior of the PEMFC stack. Second, this Koopman-based model was directly integrated with LQR for optimizing temperature, temperature variations, and output power efficiency of the PEMFC stack by regulating fan speed, with a physics-based model serving as the plant model. Finally, the performance of the Koopman-based LQRs (KLQR) was compared to a baseline proportional-integral (PI) controller across various ambient temperatures and operating conditions, focusing on temperature, temperature variations, and net power output. The results demonstrate the proposed Koopman-based approach can be seamless integration with linear optimal control algorithms, effectively minimizing temperature, temperature variations across the PEMFC stack, and the net power outputs under different ambient temperature and operating conditions.

References

1.
EPA,
2023
, “
Overview of Greenhouse Gases
,” EPA, Washington, DC, accessed 1 Mar. 2023, https://www.epa.gov/ghgemissions/overview-greenhouse-gases
2.
Peng
,
Q.
,
Rockstroh
,
T.
, and
Hall
,
C.
,
2022
, “
The Impact of Fuel and Injection Strategy on Combustion Characteristics, Emissions and Efficiency in Gasoline Compression Ignition Operation
,”
Fuel
,
318
, p.
123548
.10.1016/j.fuel.2022.123548
3.
Cheng
,
S.
,
Goldsborough
,
S. S.
,
Wagnon
,
S. W.
,
Whitesides
,
R.
,
McNenly
,
M.
,
Pitz
,
W. J.
,
Lopez-Pintor
,
D.
, and
Dec
,
J. E.
,
2022
, “
Replicating HCCI-Like Autoignition Behavior: What Gasoline Surrogate Fidelity is Needed?
,”
Appl. Energy Combust. Sci.
,
12
, p.
100091
.10.1016/j.jaecs.2022.100091
4.
Sforzo
,
B.
,
Moon
,
C. Y.
,
Peng
,
Q.
,
Ilavsky
,
J.
, and
Powell
,
C. F.
,
2023
, “
Atomization Performance of a Simplex Spray Through X-Ray Scattering Tomography
,”
AIAA
Paper No.
2023
-
2047
.10.2514/6.2023-2047
5.
Moon
,
C. Y.
,
Peng
,
Q.
,
Sforzo
,
B.
,
Kastengren
,
A.
, and
Powell
,
C. F.
,
2023
, “
X-Ray Phase Contrast Imaging and Radiography of Pressure-Swirl Atomizing Sprays in a Crossflow
,”
AIAA
Paper No.
2023
-
0088
.10.2514/6.2023-0088
6.
Huo
,
D.
, and
Meckl
,
P.
,
2022
, “
Power Management of a Plug-in Hybrid Electric Vehicle Using Neural Networks With Comparison to Other Approaches
,”
Energies
,
15
(
15
), p.
5735
.10.3390/en15155735
7.
Peng
,
Q.
,
Huo
,
D.
, and
Hall
,
C. M.
,
2022
, “
Neural Network-Based Air Handling Control for Modern Diesel Engines
,”
Proc. Inst. Mech. Eng., Part D: J. Automobile Eng.
,
237
(
5
), pp.
1113
1130
.10.1177/09544070221083367
8.
Peng
,
Q.
,
Huo
,
D.
, and
Hall
,
C. M.
,
2022
, “
A Comparison of Neural NetworkBased Strategies for Diesel Engine Air Handling Control
,” American Control Conference (
ACC
), Atlanta, GA, June 8–10, pp.
3031
3037
.10.23919/ACC53348.2022.9867295
9.
Tang
,
J.
,
Dai
,
W.
,
Archer
,
C.
,
Yi
,
J.
, and
Zhu
,
G.
,
2023
, “
Cycle-Based LQG Knock Control Using Identified Exhaust Temperature Model
,”
Int. J. Engine Res.
,
24
(
7
), pp.
3047
3060
.10.1177/14680874221138990
10.
Garche
,
J.
, and
Ju Rissen
,
L.
,
2015
, “
Applications of Fuel Cell Technology: Status and Perspectives
,”
Electrochem. Soc. Interface
,
24
(
2
), pp.
39
43
.10.1149/2.F02152if
11.
Wilberforce
,
T.
,
Alaswad
,
A.
,
Palumbo
,
A.
,
Dassisti
,
M.
, and
Olabi
,
A.-G.
,
2016
, “
Advances in Stationary and Portable Fuel Cell Applications
,”
Int. J. Hydrogen Energy
,
41
(
37
), pp.
16509
16522
.10.1016/j.ijhydene.2016.02.057
12.
Felseghi
,
R.-A.
,
Carcadea
,
E.
,
Raboaca
,
M. S.
,
Trufin
,
C. N.
, and
Filote
,
C.
,
2019
, “
Hydrogen Fuel Cell Technology for the Sustainable Future of Stationary Applications
,”
Energies
,
12
(
23
), p.
4593
.10.3390/en12234593
13.
Hao
,
D.
,
Shen
,
J.
,
Hou
,
Y.
,
Zhou
,
Y.
, and
Wang
,
H.
,
2016
, “
An Improved Empirical Fuel Cell Polarization Curve Model Based on Review Analysis
,”
Int. J. Chem. Eng.
,
2016
, pp.
1
10
.10.1155/2016/4109204
14.
Pukrushpan
,
J.
,
Stefanopoulou
,
A.
, and
Peng
,
H.
,
2002
, “
Modeling and Control for PEM Fuel Cell Stack System
,”
Proceedings of the American Control Conference
, Anchorage, AK, May 8–10, pp.
3117
3122
.10.1109/ACC.2002.1025268
15.
Wu
,
H.-W.
,
2016
, “
A Review of Recent Development: Transport and Performance Modeling of PEM Fuel Cells
,”
Appl. Energy
,
165
, pp.
81
106
.10.1016/j.apenergy.2015.12.075
16.
Yang
,
B.
,
Wang
,
J.
,
Zhang
,
M.
,
Shu
,
H.
,
Yu
,
T.
,
Zhang
,
X.
,
Yao
,
W.
, and
Sun
,
L.
,
2020
, “
A State-of-the-Art Survey of Solid Oxide Fuel Cell Parameter Identification: Modelling, Methodology, and Perspectives
,”
Energy Convers. Manage.
,
213
, p.
112856
.10.1016/j.enconman.2020.112856
17.
Ding
,
R.
,
Zhang
,
S.
,
Chen
,
Y.
,
Rui
,
Z.
,
Hua
,
K.
,
Wu
,
Y.
,
Li
,
X.
,
Duan
,
X.
,
Wang
,
X.
,
Li
,
J.
, and
Liu
,
J.
,
2022
, “
Application of Machine Learning in Optimizing Proton Exchange Membrane Fuel Cells: A Review
,”
Energy AI
,
9
, p.
100170
.10.1016/j.egyai.2022.100170
18.
Zhao
,
J.
,
Li
,
X.
,
Shum
,
C.
, and
McPhee
,
J.
,
2021
, “
A Review of Physics-Based and Data-Driven Models for Real-Time Control of Polymer Electrolyte Membrane Fuel Cells
,”
Energy AI
,
6
, p.
100114
.10.1016/j.egyai.2021.100114
19.
Ou
,
K.
,
Yuan
,
W.-W.
,
Choi
,
M.
,
Yang
,
S.
, and
Kim
,
Y.-B.
,
2017
, “
Performance Increase for an Open-Cathode PEM Fuel Cell With Humidity and Temperature Control
,”
Int. J. Hydrogen Energy
,
42
(
50
), pp.
29852
29862
.10.1016/j.ijhydene.2017.10.087
20.
Zhang
,
B.
,
Lin
,
F.
,
Zhang
,
C.
,
Liao
,
R.
, and
Wang
,
Y.-X.
,
2020
, “
Design and Implementation of Model Predictive Control for an Open-Cathode Fuel Cell Thermal Management System
,”
Renewable Energy
,
154
, pp.
1014
1024
.10.1016/j.renene.2020.03.073
21.
Derbeli
,
M.
,
Napole
,
C.
, and
Barambones
,
O.
,
2021
, “
Machine Learning Approach for Modeling and Control of a Commercial Heliocentris FC50 PEM Fuel Cell System
,”
Mathematics
,
9
(
17
), p.
2068
.10.3390/math9172068
22.
Koopman
,
B. O.
,
1931
, “
Hamiltonian Systems and Transformation in Hilbert Space
,”
Proc. Natl. Acad. Sci.
,
17
(
5
), pp.
315
318
.10.1073/pnas.17.5.315
23.
Koopman
,
B. O.
, and
Neumann
,
J. V.
,
1932
, “
Dynamical Systems of Continuous Spectra
,”
Proc. Natl. Acad. Sci.
,
18
(
3
), pp.
255
263
.10.1073/pnas.18.3.255
24.
Mauroy
,
A.
,
Susuki
,
Y.
, and
Mezić
,
I.
,
2020
,
Koopman Operator in Systems and Control
,
Springer
, Berlin, Germany.
25.
Budišić
,
M.
,
Mohr
,
R.
, and
Mezić
,
I.
,
2012
, “
Applied Koopmanism
,”
Chaos: An Interdiscip. J. Nonlinear Sci.
,
22
(
4
), p.
047510
.10.1063/1.4772195
26.
Williams
,
M. O.
,
Kevrekidis
,
I. G.
, and
Rowley
,
C. W.
,
2015
, “
A Data–Driven Approximation of the Koopman Operator: Extending Dynamic Mode Decomposition
,”
J. Nonlinear Sci.
,
25
(
6
), pp.
1307
1346
.10.1007/s00332-015-9258-5
27.
Korda
,
M.
, and
Mezić
,
I.
,
2018
, “
Linear Predictors for Nonlinear Dynamical Systems: Koopman Operator Meets Model Predictive Control
,”
Automatica
,
93
, pp.
149
160
.10.1016/j.automatica.2018.03.046
28.
Huo
,
D.
,
Peng
,
Q.
, and
Hall
,
C. M.
,
2023
, “
Koopman-Based Modeling of an Open Cathode Proton Exchange Membrane Fuel Cell Stack
,”
IFACPapersOnLine
,
56
(
3
), pp.
67
72
.10.1016/j.ifacol.2023.12.002
29.
Huo
,
D.
, and
Hall
,
C. M.
,
2023
, “
Data-Driven Prediction of Temperature Variations in an Open Cathode Proton Exchange Membrane Fuel Cell Stack Using Koopman Operator
,”
Energy AI
,
14
, p.
100289
.10.1016/j.egyai.2023.100289
30.
O'hayre
,
R.
,
Cha
,
S.-W.
,
Colella
,
W.
, and
Prinz
,
F. B.
,
2016
,
Fuel Cell Fundamentals
, John Wiley & Sons, Hoboken, NJ.
31.
Kyle
,
B. G.
,
1984
, “
Chemical and Process Thermodynamics
,” Prentice Hall, Englewood Cliffs, NJ.
32.
Wang
,
Y.-X.
,
Yu
,
D.-H.
,
Chen
,
S.-A.
, and
Kim
,
Y.-B.
,
2014
, “
Robust DC/DC Converter Control for Polymer Electrolyte Membrane Fuel Cell Application
,”
J. Power Sources
,
261
, pp.
292
305
.10.1016/j.jpowsour.2014.03.048
33.
Ishaku
,
J.
,
Lotfi
,
N.
,
Zomorodi
,
H.
, and
Landers
,
R. G.
,
2014
, “
Control-Oriented Modeling for Open-Cathode Fuel Cell Systems
,”
American Control Conference
, Portland, OR, June 4–6, pp.
268
273
.10.1109/ACC.2014.6859221
You do not currently have access to this content.