Abstract

This paper analyzes the suboptimal implementation of shrinking horizon model predictive control (SHMPC) when a fixed number of solver iterations and a warm-start are utilized at each time-step to solve the underlying optimal control problem (OCP). We derive bounds on the loss of performance (regret) and on the difference between suboptimal SHMPC and optimal solutions. This analysis provides insights and practical guidelines for the implementation of SHMPC under computational limitations. A numerical example of axisymmetric spacecraft spin stabilization is reported. The suboptimal implementation of SHMPC is shown to be capable of steering the system from an initial state into a known terminal set while satisfying control constraints.

References

1.
Kwon
,
W. H.
, and
Han
,
S. H.
,
2005
,
Receding Horizon Control: Model Predictive Control for State Models
,
Springer Science and Business Media
,
Berlin, Germany
.
2.
Greer
,
W. B.
, and
Sultan
,
C.
,
2020
, “
Shrinking Horizon Model Predictive Control Method for Helicopter–Ship Touchdown
,”
J. Guid., Control, Dyn.
,
43
(
5
), pp.
884
900
.10.2514/1.G004374
3.
Esmaeel Nezhad
,
A.
,
Rahimnejad
,
A.
,
Nardelli
,
P. H. J.
,
Gadsden
,
S. A.
,
Sahoo
,
S.
, and
Ghanavati
,
F.
,
2022
, “
A Shrinking Horizon Model Predictive Controller for Daily Scheduling of Home Energy Management Systems
,”
IEEE Access
,
10
, pp.
29716
29730
.10.1109/ACCESS.2022.3158346
4.
Pedari
,
Y.
,
Basu
,
H.
, and
Ossareh
,
H. R.
,
2023
, “
A Novel Framework for Trajectory Planning and Safe Navigation of Satellite Swarms
,”
IFAC-PapersOnLine
,
56
(
3
), pp.
547
552
.10.1016/j.ifacol.2023.12.081
5.
Karapetyan
,
A.
,
Balta
,
E. C.
,
Iannelli
,
A.
, and
Lygeros
,
J.
,
2023
, “
On the Finite-Time Behavior of Suboptimal Linear Model Predictive Control
,” 2023 62nd IEEE Conference on Decision and Control (
CDC
), Singapore, Dec. 13–15, pp.
5053
5058
.10.1109/CDC49753.2023.10383607
6.
Karapetyan
,
A.
,
Balta
,
E. C.
,
Iannelli
,
A.
, and
Lygeros
,
J.
,
2023
, “
Closed-Loop Finite-Time Analysis of Suboptimal Online Control
,” e-print
arXiv:2312.05607
.10.48550/arXiv.2312.05607
7.
Dontchev
,
A. L.
,
2021
,
Lectures on Variational Analysis
, Vol.
205
,
Springer
,
Berlin, Germany
.
8.
Dontchev
,
A. L.
,
Kolmanovsky
,
I. V.
,
Krastanov
,
M. I.
,
Veliov
,
V. M.
, and
Vuong
,
P.
,
2020
, “
Approximating Optimal Finite Horizon Feedback by Model Predictive Control
,”
Syst. Control Lett.
,
139
, p.
104666
.10.1016/j.sysconle.2020.104666
9.
Dontchev
,
A. L.
,
Kolmanovsky
,
I. V.
,
Krastanov
,
M. I.
, and
Veliova
,
V. M.
,
2020
, “
Approximating Open-Loop and Closed-Loop Optimal Control by Model Predictive Control
,”
2020 European Control Conference
(
ECC
), St. Petersburg, Russia, May 12–15, pp.
190
195
.10.23919/ECC51009.2020.9143615
10.
Leung
,
J.
, and
Kolmanovsky
,
I. V.
,
2023
, “
Time-Distributed Optimization for Shrinking Horizon MPC
,”
IFAC-PapersOnLine
,
56
(
2
), pp.
9429
9435
.10.1016/j.ifacol.2023.10.236
11.
Limon
,
D.
,
Alamo
,
T.
,
Salas
,
F.
, and
Camacho
,
E.
,
2006
, “
On the Stability of Constrained MPC Without Terminal Constraint
,”
IEEE Trans. Autom. Control
,
51
(
5
), pp.
832
836
.10.1109/TAC.2006.875014
12.
Liao-McPherson
,
D.
,
Skibik
,
T.
,
Leung
,
J.
,
Kolmanovsky
,
I.
, and
Nicotra
,
M. M.
,
2022
, “
An Analysis of Closed-Loop Stability for Linear Model Predictive Control Based on Time-Distributed Optimization
,”
IEEE Trans. Autom. Control
,
67
(
5
), pp.
2618
2625
.10.1109/TAC.2021.3086295
13.
Taylor
,
A. B.
,
Hendrickx
,
J. M.
, and
Glineur
,
F.
,
2018
, “
Exact Worst-Case Convergence Rates of the Proximal Gradient Method for Composite Convex Minimization
,”
J. Optim. Theory Appl.
,
178
(
2
), pp.
455
476
.10.1007/s10957-018-1298-1
14.
Yildirim
,
E. A.
, and
Wright
,
S. J.
,
2002
, “
Warm-Start Strategies in Interior-Point Methods for Linear Programming
,”
SIAM J. Optim.
,
12
(
3
), pp.
782
810
.10.1137/S1052623400369235
15.
Nesterov
,
Y.
,
2013
, “
Gradient Methods for Minimizing Composite Functions
,”
Math. Program.
,
140
(
1
), pp.
125
161
.10.1007/s10107-012-0629-5
16.
Wie
,
B.
,
1998
,
Space Vehicle Dynamics and Control
,
AIAA
,
Reston, VA
.
17.
Petersen
,
C.
, and
Kolmanovsky
,
I.
,
2016
, “
Coupled Translational and Rotational Dynamics for Precise Constrained Rendezvous and Docking With Periodic Reference Governors
,”
Proceedings of the 26th AAS/AIAA Space Flight Mechanics Meeting
, Napa, CA, Feb. 14–18, p.
158
.
18.
Curtis
,
H. D.
,
2013
,
Orbital Mechanics for Engineering Students
,
Butterworth-Heinemann
,
Oxford, UK
.
19.
Boyd
,
S. P.
, and
Vandenberghe
,
L.
,
2004
,
Convex Optimization
,
Cambridge University Press
,
Cambridge, UK
.
20.
Rawlings
,
J.
, and
Mayne
,
D.
,
2009
,
Model Predictive Control: Theory and Design
,
Nob Hill Publishing
,
San Francisco CA
.
21.
Ye
,
M.
, and
Kolmanovsky
,
I.
,
2022
, “
Approximating Optimal Control by Shrinking Horizon Model Predictive Control for Spacecraft Rendezvous and Docking
,”
IFAC-PapersOnLine
,
55
(
16
), pp.
284
289
.10.1016/j.ifacol.2022.09.038
You do not currently have access to this content.