Abstract

In order to improve the driving stability of three-axis heavy vehicles (TAHV) under special driving conditions, this paper proposes a novel integrated control scheme combining six-wheel steering (6 WS) and direct yaw moment control (DYC). First, a 9-DOF TAHV dynamics model, which considers the tire nonlinear mechanical properties under combined conditions, is established, and an equivalent stiffness coefficient of the middle and rear axles is introduced to calculate the vertical load of each wheel more accurately. In the 6 WS control strategy, with the goal of zero sideslip angle, the steering ratio coefficients of the middle and rear axles are adjusted in real-time according to the vehicle longitudinal speed based on the Ackerman principle. In the DYC strategy, the tire cornering stiffness of the TAHV reference model is dynamically corrected in real-time based on the Newton interpolation method. In addition, the longitudinal critical speed is determined by using Laplace transform to choose the suitable reference model for different steering modes to calculate the ideal yaw rate value. Then, based on feedforward control and feedback control using nonsingular fast terminal sliding mode (NFTSM) control (SMC) algorithm, the optimal additional yaw moment required for TAHV lateral stabilization is calculated. On this basic, the braking torque of every wheel is obtained by optimal control allocation algorithm. Finally, simulation verification is carried out for four typical driving conditions, and the results show that the integrated control scheme has good control effect on lateral stability of TAHV.

References

1.
Chen
,
T.
,
Cai
,
Y.
,
Chen
,
L.
, and
Xu
,
X.
,
2022
, “
Parallel Control Method for Unmanned Driving of Three-Axis Emergency Rescue Vehicle
,”
J. Electron. Meas. Instrum.
,
36
(
9
), pp.
72
79
.https://link.oversea.cnki.net/doi/10.13382/j.jemi.B2205561
2.
Jiang
,
Y.
,
Xu
,
X.
, and
Zhang
,
L.
,
2021
, “
Heading Tracking Of 6WID/4WIS Unmanned Ground Vehicles With Variable Wheelbase Based on Model Free Adaptive Control
,”
Mech. Syst. Signal Process.
,
159
, p.
107715
.10.1016/j.ymssp.2021.107715
3.
Jiang
,
Y.
,
Meng
,
H.
,
Chen
,
G.
,
Yang
,
C.
,
Xu
,
X.
,
Zhang
,
L.
, and
Xu
,
H.
,
2022
, “
Differential-Steering Based Path Tracking Control and Energy-Saving Torque Distribution Strategy of 6WID Unmanned Ground Vehicle
,”
Energy
,
254
, p.
124209
.10.1016/j.energy.2022.124209
4.
Liu
,
M.
,
Zhang
,
C.
,
Zhang
,
R.
, and
Wang
,
Z.
,
2014
, “
Research on Steady and Transient Characteristics of 4-Axle Vehicle Handling
,” IEEE Transportation Electrification Conference and Expo Asia-Pacific (
ITEC Asia-Pacific
), Beijing, China, Aug. 31–Sept. 3, pp.
1
6
.10.1109/ITEC-AP.2014.6940830
5.
Qu
,
Q.
, and
Zu
,
J.
,
2008
, “
On Steering Control of Commercial Three-Axle Vehicle
,”
ASME J. Dyn. Syst. Meas. Control-Trans. ASME
,
130
(
2
), p.
021010
.10.1115/1.2837438
6.
Ding
,
J.
, and
Guo
,
K.
,
2016
, “
Development of A Generalised Equivalent Estimation Approach for Multi-Axle Vehicle Handling Dynamics
,”
Veh. Syst. Dyn.
,
54
(
1
), pp.
20
57
.10.1080/00423114.2015.1113303
7.
Zhang
,
Y.
,
Huang
,
Y.
,
Wang
,
H.
, and
Khajepour
,
A.
,
2018
, “
A Comparative Study of Equivalent Modelling for Multi-Axle Vehicle
,”
Veh. Syst. Dyn.
,
56
(
3
), pp.
443
460
.10.1080/00423114.2017.1387277
8.
Williams
,
D.
, and
Nhila
,
A.
,
2013
, “
Handling Comparison of Vehicles With Steerable Auxiliary Axles
,”
SAE Int. J. Commer. Veh.
,
6
(
2
), pp.
281
287
.10.4271/2013-01-2353
9.
Fancher
,
P.
, and
Winkler
,
C.
,
2007
, “
Directional Performance Issues in Evaluation and Design of Articulated Heavy Vehicles
,”
Veh. Syst. Dyn.
,
45
(
7–8
), pp.
607
647
.10.1080/00423110701422434
10.
Zhang
,
H.
, and
Wang
,
J.
,
2016
, “
Vehicle Lateral Dynamics Control Through AFS/DYC and Robust Gain-Scheduling Approach
,”
IEEE Trans. Veh. Technol.
,
65
(
1
), pp.
489
494
.10.1109/TVT.2015.2391184
11.
Zhai
,
L.
,
Sun
,
T.
, and
Wang
,
J.
,
2016
, “
Electronic Stability Control Based on Motor Driving and Braking Torque Distribution for A Four In-Wheel Motor Drive Electric Vehicle
,”
IEEE Trans. Veh. Technol.
,
65
(
6
), pp.
4726
4739
.10.1109/TVT.2016.2526663
12.
Zheng
,
Y.
,
Li
,
S.
,
Li
,
K.
,
Borrelli
,
F.
, and
Hedrick
,
J.
,
2017
, “
Distributed Model Predictive Control for Heterogeneous Vehicle Platoons Under Unidirectional Topologies
,”
IEEE Trans. Control Syst. Technol.
,
25
(
3
), pp.
899
910
.10.1109/TCST.2016.2594588
13.
Baffet
,
G.
,
Charara
,
A.
,
Lechner
,
D.
, and
Thomas
,
D.
,
2008
, “
Experimental Evaluation of Observers for Tire-Road Forces, Sideslip Angle and Wheel Cornering Stiffness
,”
Veh. Syst. Dyn.
,
46
(
6
), pp.
501
520
.10.1080/00423110701493963
14.
Warth
,
G.
,
Frey
,
M.
, and
Gauterin
,
F.
,
2019
, “
Usage of The Cornering Stiffness for An Adaptive Rear Wheel Steering Feedforward Control
,”
IEEE Trans. Veh. Technol.
,
68
(
1
), pp.
264
275
.10.1109/TVT.2018.2883809
15.
Jeong
,
D.
,
Ko
,
G.
, and
Choi
,
S.
,
2022
, “
Estimation of Sideslip Angle and Cornering Stiffness of An Articulated Vehicle Using a Constrained Lateral Dynamics Model
,”
Mechatronics
,
85
, p.
102810
.10.1016/j.mechatronics.2022.102810
16.
Wang
,
W.
,
Li
,
J.
,
Sun
,
F.
,
Song
,
J.
, and
Wu
,
Y.
,
2022
, “
Path Tracking Strategy for All-Wheel Steering of Multi-Axle Heavy-Duty Vehicles Based on Tube MPC
,”
Automot. Eng.
,
44
(1
1
), pp.
1665
1675
.https://link.oversea.cnki.net/doi/10.19562/j.chinasae.qcgc.2022.11.005
17.
Sugita
,
M.
,
2017
, “
Torque Distribution Algorithm for Effective Use of Reaction Wheel Torques and Angular Momentums
,”
Acta Astronaut.
,
139
, pp.
18
23
.10.1016/j.actaastro.2017.06.014
18.
Zhao
,
J.
,
Zheng
,
L.
,
Wang
,
S.
, and
Hua
,
M.
,
2019
, “
Research on Deadbeat Current Prediction Vector Control System of Axial Flux Permanent Magnet Synchronous Motor for Electric Bus Based on Efficiency Optimal Torque Distribution Method
,”
IEEE Access
,
7
, pp.
128384
128393
.10.1109/ACCESS.2019.2939759
19.
Nie
,
L.
,
Guan
,
J.
,
Lu
,
C.
,
Zheng
,
H.
, and
Yin
,
Z.
,
2018
, “
Longitudinal Speed Control of Autonomous Vehicle Based on a Self-Adaptive PID of Radial Basis Function Neural Network
,”
Intell. Transp. Syst.
,
12
(
6
), pp.
485
494
.10.1049/iet-its.2016.0293
20.
Duan
,
H.
, and
Sun
,
C.
,
2013
, “
Pendulum-Like Oscillation Controller for Micro Aerial Vehicle With Ducted Fan Based on LQR and PSO
,”
Sci. China-Technol. Sci.
,
56
(
2
), pp.
423
429
.10.1007/s11431-012-5065-5
21.
Du
,
X.
,
Htet
,
K.
, and
Tan
,
K.
,
2016
, “
Development of a Genetic-Algorithm-Based Nonlinear Model Predictive Control Scheme on Velocity and Steering of Autonomous Vehicles
,”
IEEE Trans. Ind. Electron.
,
63
(
11
), pp.
6970
6977
.10.1109/TIE.2016.2585079
22.
Li
,
B.
,
Du
,
H.
, and
Li
,
W.
,
2016
, “
Fault-Tolerant Control of Electric Vehicles With In-Wheel Motors Using Actuator-Grouping Sliding Mode Controllers
,”
Mech. Syst. Signal Process.
,
72–73
, pp.
462
485
.10.1016/j.ymssp.2015.11.020
23.
Wen
,
S.
,
Chen
,
M.
,
Zeng
,
Z.
,
Yu
,
X.
, and
Huang
,
T.
,
2017
, “
Fuzzy Control for Uncertain Vehicle Active Suspension Systems Via Dynamic Sliding-Mode Approach
,”
IEEE Trans. Syst. Man Cybern.-Syst.
,
47
(
1
), pp.
24
32
.10.1109/TSMC.2016.2564930
24.
Sun
,
X.
,
Wang
,
Y.
,
Cai
,
Y.
,
Wong
,
P.
, and
Chen
,
L.
,
2021
, “
NFTSM Control of Direct Yaw Moment for Autonomous Electric Vehicles With Consideration of Tire Nonlinear Mechanical Properties
,”
Bull. Pol. Acad. Sci.-Tech. Sci.
,
69
(
3
), p.
e137065
.10.24425/bpasts.2021.137065
25.
Mousavinejad
,
E.
,
Han
,
Q.-L.
,
Yang
,
F.
,
Zhu
,
Y.
, and
Vlacic
,
L.
,
2017
, “
Integrated Control of Ground Vehicles Dynamics Via Advanced Terminal Sliding Mode Control
,”
Veh. Syst. Dyn.
,
55
(
2
), pp.
268
294
.10.1080/00423114.2016.1256489
26.
Karlsson
,
J.
,
Murgovski
,
N.
, and
Sjoberg
,
J.
,
2020
, “
Computationally Efficient Autonomous Overtaking on Highways
,”
IEEE Trans. Intell. Transp. Syst.
,
21
(
8
), pp.
3169
3183
.10.1109/TITS.2019.2929963
27.
Yi
,
K.
,
Chung
,
T.
,
Kim
,
J.
, and
Yi
,
S.
,
2003
, “
An Investigation Into Differential Braking Strategies for Vehicle Stability Control
,”
Proc. Inst. Mech. Eng., Part D
,
217
(
12
), pp.
1081
1093
.10.1243/09544070360729428
28.
Li
,
S.
, and
Ren
,
J.
,
2014
, “
Driver Steering Control and Full Vehicle Dynamics Study Based on A Nonlinear Three-Directional Coupled Heavy-Duty Vehicle Model
,”
Math. Probl. Eng.
,
2014
(
1
), pp.
1
16
.10.1155/2014/352374
29.
Kang
,
C.
,
Lee
,
S.
, and
Chung
,
C.
,
2017
, “
On-Road Path Generation and Control for Waypoints Tracking
,”
IEEE Intell. Transp. Syst. Mag.
,
9
(
3
), pp.
36
45
.10.1109/MITS.2017.2709778
30.
East
,
S.
, and
Cannon
,
M.
,
2020
, “
Energy Management in Plug-In Hybrid Electric Vehicles: Convex Optimization Algorithms for Model Predictive Control
,”
IEEE Trans. Control Syst. Technol.
,
28
(
6
), pp.
2191
2203
.10.1109/TCST.2019.2933793
31.
Zhang
,
W.
,
Zong
,
C.
,
Chen
,
G.
, and
Li
,
S.
,
2013
, “
Electric Power Steering Compensation Algorithm Research in Differential Braking Condition
,”
Appl. Mech. Mater.
,
336
338
, pp.
532
535
.10.4028/www.scientific.net/AMM.336-338.532
32.
Besselink
,
I.
,
Schmeitz
,
A.
, and
Pacejka
,
H.
,
2010
, “
An Improved Magic Formula/Swift Tyre Model That Can Handle Inflation Pressure Changes
,”
Veh. Syst. Dyn.
,
48
(
sup1
), pp.
337
352
.10.1080/00423111003748088
33.
Alagappan
,
A.
,
Rao
,
K.
, and
Kumar
,
R.
,
2015
, “
A Comparison of Various Algorithms to Extract Magic Formula Tire Model Coefficients for Vehicle Dynamics Simulations
,”
Veh. Syst. Dyn.
,
53
(
2
), pp.
154
178
.10.1080/00423114.2014.984727
34.
Shi
,
K.
,
Wang
,
R.
, and
Tan
,
Y.
,
2015
, “
Research on Calculation of Wheel Vertical Load Transfer in Three-Axle Vehicle
,”
Agric. Equip. Veh. Eng.
,
53
(
8
), pp.
21
24
.
35.
Shi
,
X.
,
Wang
,
H.
,
Chen
,
L.
,
Sun
,
X.
,
Yang
,
C.
, and
Cai
,
Y.
,
2024
, “
A Distributed Driving Six-Wheel Steering Commercial Vehicle Chassis Stability Domain Criterion for Coordination of Multiple Subsystems
,”
IEEE Trans. Veh. Technol.
,
73
(
12
), pp.
18512
18526
.10.1109/TVT.2024.3445597
36.
Li
,
H.
,
Liu
,
H.
,
Gao
,
H.
, and
Shi
,
P.
,
2012
, “
Reliable Fuzzy Control for Active Suspension Systems With Actuator Delay and Fault
,”
IEEE Trans. Fuzzy Syst.
,
20
(
2
), pp.
342
357
.10.1109/TFUZZ.2011.2174244
37.
Zou
,
L.
,
Song
,
L.
,
Wang
,
X.
,
Weise
,
T.
,
Chen
,
T.
, and
Zhang
,
C.
,
2020
, “
A New Approach to Newton-Type Polynomial Interpolation With Parameters
,”
Math. Probl. Eng.
,
2020
, pp.
1
15
.10.1155/2020/9020541
38.
Li
,
S.
,
Zhao
,
J.
,
Yang
,
S.
, and
Fan
,
H.
,
2019
, “
Research on a Coordinated Cornering Brake Control of Three‐Axle Heavy Vehicles Based on Hardware‐in‐Loop Test
,”
IET Intell. Transp. Syst.
,
13
(
5
), pp.
905
914
.10.1049/iet-its.2018.5406
39.
Veneri
,
M.
, and
Massaro
,
M.
,
2021
, “
The Effect of Ackermann Steering on the Performance of Race Cars
,”
Veh. Syst. Dyn.
,
59
(
6
), pp.
907
927
.10.1080/00423114.2020.1730917
40.
Tian
,
Y.
,
Cai
,
Y.
, and
Deng
,
Y.
,
2020
, “
A Fast Nonsingular Terminal Sliding Mode Control Method for Nonlinear Systems With Fixed-Time Stability Guarantees
,”
IEEE Access
,
8
, pp.
60444
60454
.10.1109/ACCESS.2020.2980044
41.
Ding
,
S.
,
Liu
,
L.
, and
Park
,
J.
,
2019
, “
A Novel Adaptive Nonsingular Terminal Sliding Mode Controller Design and Its Application to Active Front Steering System
,”
Int. J. Robust Nonlinear Control
,
29
(
12
), pp.
4250
4269
.10.1002/rnc.4625
42.
Van
,
M.
,
Mavrovouniotis
,
M.
, and
Ge
,
S.
,
2019
, “
An Adaptive Backstepping Nonsingular Fast Terminal Sliding Mode Control for Robust Fault Tolerant Control of Robot Manipulators
,”
IEEE Trans. Syst. Man Cybern.-Syst.
,
49
(
7
), pp.
1448
1458
.10.1109/TSMC.2017.2782246
43.
Polyakov
,
A.
, and
Fridman
,
L.
,
2014
, “
Stability Notions and Lyapunov Functions for Sliding Mode Control Systems
,”
J. Franklin Inst.-Eng. Appl. Math.
,
351
(
4
), pp.
1831
1865
.10.1016/j.jfranklin.2014.01.002
44.
Hajiloo
,
R.
,
Khajepour
,
A.
,
Kasaiezadeh
,
A.
,
Chen
,
S.
, and
Litkouhi
,
B.
,
2023
, “
A Model Predictive Control of Electronic Limited Slip Differential and Differential Braking for Improving Vehicle Yaw Stability
,”
IEEE Trans. Control Syst. Technol.
,
31
(
2
), pp.
797
808
.10.1109/TCST.2022.3206282
You do not currently have access to this content.