Solid oxide fuel cells (SOFCs) can be operated on a wide range of fuels, including hydrocarbons. Such a fuel supply includes the risk of carbon formation on the catalytically active nickel centers within the porous anodic substrate. Coking is very critical for the reliability and durability of the SOFCs. Thus, within this study, coking propensity of the most prominent carbon containing fuels was analyzed by thermodynamic equilibrium calculations for two fundamentally different types of carbon and detailed transient numerical simulations based on heterogeneous reforming kinetics. This approach is new to the literature and reveals the strengths and weaknesses of both fundamentally different approaches. It was shown that in thermodynamic equilibrium calculations, carbon formation is most likely due to pure methane. Carbon monoxide will form the least amounts of carbon in typical SOFC temperature ranges. Furthermore, based on a validated computational fluid dynamics (CFD) simulation model, detailed heterogeneous reaction kinetics were used to directly simulate elementary carbon adsorbed to the reactive substrate surface. The amounts, spatial and temporal distribution, of carbon atoms within the porous structure were identified between 600 °C and 1000°C for a broad steam-to-carbon ratio range of 0.5–2. It was shown that most carbon is formed at the beginning of the substrate. A key finding was that steady-state results differ greatly from results within the first few seconds of fuel supply. An increment in temperature causes a significant increase in the amount of carbon formed, making the highest temperatures the most critical for the SOFC operation. Moreover, it was shown that mixtures of pure methane deliver the highest amounts of adsorbed elementary carbon. Equimolar mixtures of CH4/CO cause second highest surface coverages. Pure carbon monoxide blends led to least significant carbon formations. This work has shown the important contribution that thermodynamic equilibrium calculation results, as well as the outcomes of the detailed CFD simulations, allow to identify suitable operating conditions for the SOFC systems and to minimize the risk of coking on porous anodes.

References

1.
Singhal
,
S. C.
, and
Kendall
,
K.
,
2003
,
High-Temperature Solid Oxide Fuel Cells: Fundamentals, Design, and Applications
,
Elsevier Advanced Technology
,
New York
.
2.
Mogensen
,
D.
,
Grunwaldt
,
J. D.
,
Hendriksen
,
P. V.
,
Dam-Johansen
,
K.
, and
Nielsen
,
J. U.
,
2011
, “
Internal Steam Reforming in Solid Oxide Fuel Cells: Status and Opportunities of Kinetic Studies and Their Impact on Modelling
,”
J. Power Sources
,
196
(
1
), pp.
25
38
.
3.
Hajimolana
,
S. A.
,
Hussain
,
M. A.
,
Daud
,
W. M. A. W.
,
Soroush
,
M.
, and
Shamiri
,
A.
,
2011
, “
Mathematical Modeling of Solid Oxide Fuel Cells: A Review
,”
Renewable Sustainable Energy Rev.
,
15
(
4
), pp.
1893
1917
.
4.
National Energy Technology Laboratory
,
2004
,
Fuel Cell Handbook
, 7th ed.,
U.S. Department of Energy
,
Morgantown, WV
.
5.
Lawrence
,
J.
, and
Boltze
,
M.
,
2006
, “
Auxiliary Power Unit Based on a Solid Oxide Fuel Cell and Fuelled With Diesel
,”
J. Power Sources
,
154
(
2
), pp.
479
488
.
6.
Hauth
,
M.
,
Lerch
,
W.
,
Koenig
,
K.
, and
Karl
,
J.
,
2011
, “
Impact of Naphthalene on the Performance of SOFCs During Operation With Synthetic Wood Gas
,”
J. Power Sources
,
196
(
17
), pp.
7144
7151
.
7.
Nagel
,
F. P.
,
Schildhauer
,
T. J.
,
Sfeir
,
J.
,
Schuler
,
A.
, and
Biollaz
,
S. M. A.
,
2009
, “
The Impact of Sulfur on the Performance of a Solid Oxide Fuel Cell (SOFC) System Operated With Hydrocarboneous Fuel Gas
,”
J. Power Sources
,
189
(
2
), pp.
1127
1131
.
8.
Singh
,
D.
,
Hernndez-Pacheco
,
E.
,
Hutton
,
P. N.
,
Patel
,
N.
, and
Mann
,
M. D.
,
2005
, “
Carbon Deposition in an SOFC Fueled by Tar-Laden Biomass Gas: A Thermodynamic Analysis
,”
J. Power Sources
,
142
(
1–2
), pp.
194
199
.
9.
Chen
,
D.
,
Lodeng
,
R.
,
Anundskas
,
A.
,
Olsvik
,
O.
, and
Holmen
,
A.
,
2001
, “
Deactivation During Carbon Dioxide Reforming of Methane Over Ni Catalyst: Microkinetic Analysis
,”
Chem. Eng. Sci.
,
56
(
4
), pp.
1371
1379
.
10.
Lawlor
,
V.
,
2013
, “
Review of the Micro-Tubular Solid Oxide Fuel Cell (Part II: Cell Design Issues and Research Activities)
,”
J. Power Sources
,
240
, pp.
421
441
.
11.
Saunders
,
G. J.
,
Preece
,
J.
, and
Kendall
,
K.
,
2004
, “
Formulating Liquid Hydrocarbon Fuels for SOFCs
,”
J. Power Sources
,
131
(
1–2
), pp.
23
26
.
12.
Aicher
,
T.
,
Lenz
,
B.
,
Gschnell
,
F.
,
Groos
,
U.
,
Federici
,
F.
,
Caprile
,
L.
, and
Parodi
,
L.
,
2006
, “
Fuel Processors for Fuel Cell APU Applications
,”
J. Power Sources
,
154
(
2
), pp.
503
508
.
13.
Kang
,
I.
,
Kang
,
Y.
,
Yoon
,
S.
,
Bae
,
G.
, and
Bae
,
J.
,
2008
, “
The Operating Characteristics of Solid Oxide Fuel Cells Driven by Diesel Autothermal Reformate
,”
Int. J. Hydrogen Energy
,
33
(
21
), pp.
6298
6307
.
14.
Cimenti
,
M.
, and
Hill
,
J. M.
,
2009
, “
Direct Utilization of Liquid Fuels in SOFC for Portable Applications: Challenges for the Selection of Alternative Anodes
,”
Energies
,
2
(
2
), pp.
377
410
.
15.
Kendall
,
K.
,
Slinn
,
M.
, and
Preece
,
J.
,
2006
, “
Formulating Liquid Ethers for Microtubular SOFCs
,”
J. Power Sources
,
157
(
2
), pp.
750
753
.
16.
Buchinger
,
G.
,
Hinterreiter
,
P.
,
Raab
,
T.
,
Griesser
,
S.
,
Claassen
,
R.
,
Claassen
,
D. P.
,
Sitte
,
W.
, and
Meissner
,
D.
,
2006
, “
Operating Microtubular SOFCS With Hydrogen Chloride and Hydrogen Sulfide Containing Fuels and Synthetic Wood Gas
,”
ASME J. Fuel Cell Sci. Technol.
,
3
(
3
), pp.
280
283
.
17.
Xu
,
J.
, and
Froment
,
G. F.
,
1989
, “
Methane Steam Reforming, Methanation and Water-Gas Shift: I. Intrinsic Kinetics
,”
AIChE J.
,
35
(
1
), pp.
88
96
.
18.
Achenbach
,
E.
, and
Riensche
,
E.
,
1994
, “
Methane Steam Reforming Kinetics for Solid Oxide Fuel Cells
,”
J. Power Sources
,
52
(
2
), pp.
283
288
.
19.
Ahmed
,
K.
, and
Foger
,
K.
,
2000
, “
Kinetics of Internal Steam Reforming of Methane on Ni/YSZ-Based Anodes for Solid Oxide Fuel Cells
,”
Catal. Today
,
63
(
2–4
), pp.
479
487
.
20.
Alzate-Restrepo
,
V.
, and
Hill
,
J. M.
,
2008
, “
Effect of Anodic Polarization on Carbon Deposition on Ni/YSZ Anodes Exposed to Methane
,”
Appl. Catal.
, A,
342
(
1–2
), pp.
49
55
.
21.
Eveloy
,
V.
,
2011
, “
Anode Fuel and Steam Recycling for Internal Methane Reforming SOFCs: Analysis of Carbon Deposition
,”
ASME J. Fuel Cell Sci. Technol.
,
8
(
1
), p.
011006
.
22.
Finnerty
,
C. M.
,
Coe
,
N. J.
,
Cunningham
,
R. H.
, and
Ormerod
,
R. M.
,
1998
, “
Carbon Formation on and Deactivation of Nickel-Based/Zirconia Anodes in Solid Oxide Fuel Cells Running on Methane
,”
Catal. Today
,
46
(
2
), pp.
137
145
.
23.
Hecht
,
E. S.
,
Gupta
,
G. K.
,
Zhu
,
H.
,
Dean
,
A. M.
,
Kee
,
R. J.
,
Maier
,
L.
, and
Deutschmann
,
O.
,
2005
, “
Methane Reforming Kinetics Within a Ni-YSZ SOFC Anode Support
,”
Appl. Catal., A
,
295
(
1
), pp.
40
51
.
24.
Hou
,
K.
, and
Hughes
,
R.
,
2001
, “
The Kinetics of Methane Steam Reforming Over a Ni/\Alpha-Al2o Catalyst
,”
Chem. Eng. J.
,
82
(
1–3
), pp.
311
328
.
25.
Ivers-Tiffe
,
E.
,
Timmermann
,
H.
,
Leonide
,
A.
,
Menzler
,
N. H.
, and
Malzbender
,
J.
,
2009
,
Methane Reforming Kinetics, Carbon Deposition, and Redox Durability of Ni/8 Yttria-Stabilized Zirconia (YSZ) Anodes
,
Wiley-Blackwell
,
Hoboken, NJ
.
26.
Janardhanan
,
M.
, and
Deutschmann
,
O.
,
2006
, “
CFD Analysis of a Solid Oxide Fuel Cell With Internal Reforming: Coupled Interactions of Transport, Heterogeneous Catalysis and Electrochemical Processes
,”
J. Power Sources
,
162
(
2
), pp.
1192
1202
.
27.
Klein
,
J.-M.
,
Bultel
,
Y.
,
Georges
,
S.
, and
Pons
,
M.
,
2007
, “
Modeling of a SOFC Fuelled by Methane: From Direct Internal Reforming to Gradual Internal Reforming
,”
Chem. Eng. Sci.
,
62
(
6
), pp.
1636
1649
.
28.
Klein
,
J.-M.
,
Pons
,
M.
,
Ozil
,
P.
, and
Bultel
,
Y.
,
2006
, “
Modeling of a Solid Oxide Fuel Cell Fueled by Methane: Analysis of Carbon Deposition
,”
ASME J. Fuel Cell Sci. Technol.
,
4
(
4
), pp.
425
434
.
29.
Koh
,
J.-H.
,
Kang
,
B.-S.
,
Lim
,
H. C.
, and
Yoo
,
Y.-S.
,
2001
, “
Thermodynamic Analysis of Carbon Deposition and Electrochemical Oxidation of Methane for SOFC Anodes
,”
Electrochem. Solid-State Lett.
,
4
(
2
), pp.
A12
A15
.
30.
Koh
,
J.-H.
,
Yoo
,
Y.-S.
,
Park
,
J.-W.
, and
Lim
,
H. C.
,
2002
, “
Carbon Deposition and Cell Performance of Ni-YSZ Anode Support SOFC With Methane Fuel
,”
Solid State Ionics
,
149
(
3
), pp.
157
166
.
31.
Lehnert
,
W.
,
Meusinger
,
J.
, and
Thom
,
F.
,
2000
, “
Modelling of Gas Transport Phenomena in SOFC Anodes
,”
J. Power Sources
,
87
(
1–2
), pp.
57
63
.
32.
Nikooyeh
,
K.
,
Clemmer
,
R.
,
Alzate-Restrepo
,
V.
, and
Hill
,
J. M.
,
2008
, “
Effect of Hydrogen on Carbon Formation on Ni/YSZ Composites Exposed to Methane
,”
Appl. Catal.
, A,
347
(
1
), pp.
106
111
.
33.
Nikooyeh
,
K.
,
Jeje
,
A. A.
, and
Hill
,
J. M.
,
2007
, “
3D Modeling of Anode-Supported Planar SOFC With Internal Reforming of Methane
,”
J. Power Sources
,
171
(
2
), pp.
601
609
.
34.
Rostrup-Nielsen
,
J. R.
,
1972
, “
Equilibria of Decomposition Reactions of Carbon Monoxide and Methane Over Nickel Catalysts
,”
J. Catal.
,
27
(
3
), pp.
343
356
.
35.
Sanchez
,
D.
,
Chacartegui
,
R.
,
Munoz
,
A.
, and
Sanchez
,
T.
,
2008
, “
On the Effect of Methane Internal Reforming Modelling in Solid Oxide Fuel Cells
,”
Int. J. Hydrogen Energy
,
33
(
7
), pp.
1834
1844
.
36.
Alzate-Restrepo
,
V.
, and
Hill
,
J. M.
,
2010
, “
Carbon Deposition on Ni/YSZ Anodes Exposed to CO/H2 Feeds
,”
J. Power Sources
,
195
(
5
), pp.
1344
1351
.
37.
Girona
,
K.
,
Laurencin
,
J.
,
Fouletier
,
J.
, and
Lefebvre-Joud
,
F.
,
2012
, “
Carbon Deposition in CH4/CO2 Operated SOFC: Simulation and Experimentation Studies
,”
J. Power Sources
,
210
, pp.
381
391
.
38.
Wang
,
Y.
,
Yoshiba
,
F.
,
Kawase
,
M.
, and
Watanabe
,
T.
,
2009
, “
Performance and Effective Kinetic Models of Methane Steam Reforming Over Ni/YSZ Anode of Planar SOFC
,”
Int. J. Hydrogen Energy
,
34
(
9
), pp.
3885
3893
.
39.
Yu
,
J.
,
Wang
,
Y.
, and
Weng
,
S.
,
2012
, “
Numerical Analysis of the Possibility of Carbon Formation in Planar SOFC Fueled With Syngas
,”
ASME J. Fuel Cell Sci. Technol.
,
9
(
2
), p.
021011
.
40.
Vakouftsi
,
E.
,
Marnellos
,
G.
,
Athanasiou
,
C.
, and
Coutelieris
,
F.
,
2011
, “
CFD Modeling of a Biogas Fuelled SOFC
,”
Solid State Ionics
,
192
(
1
), pp.
458
463
.
41.
Sasaki
,
K.
, and
Teraoka
,
Y.
,
2003
, “
Equilibria in Fuel Cell Gases: I. Equilibrium Compositions and Reforming Conditions
,”
J. Electrochem. Soc.
,
150
(
7
), pp.
A878
A884
.
42.
Sasaki
,
K.
, and
Teraoka
,
Y.
,
2003
, “
Equilibria in Fuel Cell Gases: II. The C-H-O Ternary Diagrams
,”
J. Electrochem. Soc.
,
150
(
7
), pp.
A885
–A884
.
43.
McIntosh
,
S.
, and
Gorte
,
R. J.
,
2004
, “
Direct Hydrocarbon Solid Oxide Fuel Cells
,”
Chem. Rev.
,
104
(
10
), pp.
4845
4866
.
44.
Lee
,
W. Y.
,
Hanna
,
J.
, and
Ghoniem
,
A. F.
,
2013
, “
On the Predictions of Carbon Deposition on the Nickel Anode of a SOFC and Its Impact on Open-Circuit Conditions
,”
J. Electrochem. Soc.
,
160
(
2
), pp.
F94
F105
.
45.
Zhu
,
H.
,
Kee
,
R. J.
,
Janardhanan
,
V. M.
,
Deutschmann
,
O.
, and
Goodwin
,
D. G.
,
2005
, “
Modeling Elementary Heterogeneous Chemistry and Electrochemistry in Solid-Oxide Fuel Cells
,”
J. Electrochem. Soc.
,
152
(
12
), pp.
A2427
A2440
.
46.
Maier
,
L.
,
Schdel
,
B.
,
Delgado
,
K. H.
,
Tischer
,
S.
, and
Deutschmann
,
O.
,
2011
, “
Steam Reforming of Methane Over Nickel: Development of a Multi-Step Surface Reaction Mechanism
,”
Top. Catal.
,
54
(
13–15
), pp.
845
858
.
47.
Klein
,
J.-M.
,
Georges
,
S.
, and
Bultel
,
Y.
,
2008
, “
Modeling of a SOFC Fueled by Methane: Anode Barrier to Allow Gradual Internal Reforming Without Coking
,”
J. Electrochem. Soc.
,
155
(
4
), p.
B333
.
48.
Schluckner
,
C.
,
Subotic
,
V.
,
Lawlor
,
V.
, and
Hochenauer
,
C.
,
2014
, “
Three-Dimensional Numerical and Experimental Investigation of an Industrial-Sized SOFC Fueled by Diesel Reformat-Part I: Creation of a Base Model for Further Carbon Deposition Modeling
,”
Int. J. Hydrogen Energy
,
39
(
33
), pp.
19102
19118
.
49.
Subotic
,
V.
,
Schluckner
,
C.
, and
Hochenauer
,
C.
, “
An Experimental and Numerical Study of Performance of Large Planar ESC-SOFCs and Experimental Investigation of Carbon Depositions
,”
J. Energy Inst.
(in press).
50.
Schluckner
,
C.
,
Subotic
,
V.
,
Lawlor
,
V.
, and
Hochenauer
,
C.
,
2015
, “
Three-Dimensional Numerical and Experimental Investigation of an Industrial-Sized SOFC Fueled by Diesel Reformat-Part II: Detailed Reforming Chemistry and Carbon Deposition Analysis
,”
Int. J. Hydrogen Energy
,
40
(
34
), pp.
10943
10959
.
51.
Yurkiv
,
V.
,
2014
, “
Reformate-Operated SOFC Anode Performance and Degradation Considering Solid Carbon Formation: A Modeling and Simulation Study
,”
Electrochim. Acta
,
143
, pp.
114
128
.
52.
Outokumpu
,
1974
, “
HSC Chemistry 6.0
,”
Outokumpu Research Oy.
,
Jyväskylä, Finland
.
53.
ANSYS
,
2011
, ANSYS FLUENT User’s Guide V14.0,
ANSYS Inc.
,
Canonsburg, PA
.
54.
Razbani
,
O.
,
Assadi
,
M.
, and
Andersson
,
M.
,
2013
, “
Three Dimensional CFD Modeling and Experimental Validation of an Electrolyte Supported Solid Oxide Fuel Cell Fed With Methane-Free Biogas
,”
Int. J. Hydrogen Energy
,
38
(
24
), pp.
10068
10080
.
55.
Subotic
,
V.
,
Schluckner
,
C.
,
Mathe
,
J.
,
Rechberger
,
J.
,
Schroettner
,
H.
, and
Hochenauer
,
C.
,
2015
, “
Anode Regeneration Following Carbon Depositions in an Industrial-Sized Anode Supported Solid Oxide Fuel Cell Operating on Synthetic Diesel Reformate
,”
J. Power Sources
,
295
, pp.
55
66
.
56.
Mermelstein
,
J.
,
Millan
,
M.
, and
Brandon
,
N.
,
2010
, “
The Impact of Steam and Current Density on Carbon Formation From Biomass Gasification Tar on Ni/YSZ, and Ni/CGO Solid Oxide Fuel Cell Anodes
,”
J. Power Sources
,
195
(
6
), pp.
1657
1666
.
57.
Sumi
,
H.
,
Ukai
,
K.
,
Mizutani
,
Y.
,
Mori
,
H.
,
Wen
,
C.-J.
,
Takahashi
,
H.
, and
Yamamoto
,
O.
,
2004
, “
Performance of Nickelscandia-Stabilized Zirconia Cermet Anodes for SOFCs in 3% H2oCH4
,”
Solid State Ionics
,
174
(
14
), pp.
151
156
.
You do not currently have access to this content.