In this study, a three-dimensional (3D) agglomerate model of an anion exchange membrane (AEM) fuel cell is proposed in order to analyze the influence of the composition of the catalyst layers (CLs) on overall fuel cell performance. Here, a detailed comparison between the agglomerate and a macrohomogeneous model is provided, elucidating the effects of the CL composition on the overall performance and the individual losses, the effects of operating temperature and inlet relative humidity on the cell performance, and the CL utilization by the effectiveness factor. The results show that the macrohomogeneous model overestimates the cell performance compared to the agglomerate model due to the resistances associated with the species and ionic transports in the CLs. Consequently, the hydration is negatively affected, resulting in a higher Ohmic resistance. The activation overpotential is overpredicted by the macrohomogeneous model, as the agglomerate model relates the transportation resistances within the domain with the CL composition. Despite the higher utilization in the anode CL, the cathode CL utilization shows a significant drop near the membrane–CL interface due to a high current density and a low oxygen concentration. Additionally, the influences of operating temperature and relative humidity at the flow channel inlet have been analyzed. Similar to the macrohomogeneous model, the overall cell performance of the agglomerate model is enhanced with increasing operating temperature due to the better electrochemical kinetics. However, as the relative humidity at the inlet is reduced, the overall performance of the cell deteriorates due to the poor hydration of the membrane.

References

1.
Weber
,
A. Z.
,
Borup
,
R. L.
,
Darling
,
R. M.
,
Das
,
P. K.
,
Dursch
,
T. J.
,
Gu
,
W. B.
,
Harvey
,
D.
,
Kusoglu
,
A.
,
Litster
,
S.
,
Mench
,
M. M.
,
Mukundan
,
R.
,
Owejan
,
J. P.
,
Pharoah
,
J. G.
,
Secanell
,
M.
, and
Zenyuk
,
I. V.
,
2014
, “
A Critical Review of Modeling Transport Phenomena in Polymer-Electrolyte Fuel Cells
,”
J. Electrochem. Soc.
,
161
(
12
), pp.
F1254
F1299
.
2.
Berg
,
P.
,
Promislow
,
K.
,
St. Pierre
,
J.
,
Stumper
,
J.
, and
Wetton
,
B.
,
2004
, “
Water Management in PEM Fuel Cells
,”
J. Electrochem. Soc.
,
151
(
3
), pp.
A341
A353
.
3.
Das
,
P. K.
,
Li
,
X.
, and
Liu
,
Z. S.
,
2010
, “
Analysis of Liquid Water Transport in Cathode Catalyst Layer of PEM Fuel Cells
,”
Int. J. Hydrogen Energy
,
35
(
6
), pp.
2403
2416
.
4.
Das
,
P. K.
,
Li
,
X.
,
Xie
,
Z.
, and
Liu
,
Z. S.
,
2011
, “
Effects of Catalyst Layer Structure and Wettability on Liquid Water Transport in Polymer Electrolyte Membrane Fuel Cell
,”
Int. J. Energy Res.
,
35
(
15
), pp.
1325
1339
.
5.
Huo
,
S.
,
Deng
,
H.
,
Chang
,
Y. F.
, and
Jiao
,
K.
,
2012
, “
Water Management in Alkaline Anion Exchange Membrane Fuel Cell Anode
,”
Int. J. Hydrogen Energy
,
37
(
23
), pp.
18389
18402
.
6.
Deng
,
H.
,
Huo
,
S.
,
Chang
,
Y. F.
,
Zhou
,
Y. B.
, and
Jiao
,
K.
,
2013
, “
Transient Analysis of Alkaline Anion Exchange Membrane Fuel Cell Anode
,”
Int. J. Hydrogen Energy
,
38
(
15
), pp.
6509
6525
.
7.
Jiao
,
K.
,
He
,
P.
,
Du
,
Q.
, and
Yin
,
Y.
,
2014
, “
Three-Dimensional Multiphase Modeling of Alkaline Anion Exchange Membrane Fuel Cell
,”
Int. J. Hydrogen Energy
,
39
(
11
), pp.
5981
5995
.
8.
Jiao
,
K.
,
Huo
,
S.
,
Zu
,
M.
,
Jiao
,
D. K.
,
Chen
,
J. X.
, and
Du
,
Q.
,
2015
, “
An Analytical Model for Hydrogen Alkaline Anion Exchange Membrane Fuel Cell
,”
Int. J. Hydrogen Energy
,
40
(
8
), pp.
3300
3312
.
9.
Deng
,
H.
,
Wang
,
D. W.
,
Xie
,
X.
,
Zhou
,
Y. B.
,
Yin
,
Y.
,
Du
,
Q.
, and
Jiao
,
K.
,
2016
, “
Modeling of Hydrogen Alkaline Membrane Fuel Cell With Interfacial Effect and Water Management Optimization
,”
Renewable Energy
,
91
, pp.
166
177
.
10.
Machado
,
B. S.
,
Chakraborty
,
N.
, and
Das
,
P. K.
,
2017
, “
Influences of Flow Direction, Temperature and Relative Humidity on the Performance of a Representative Anion Exchange Membrane Fuel Cell: A Computational Analysis
,”
Int. J. Hydrogen Energy
,
42
(
9
), pp.
6310
6323
.
11.
Sun
,
W.
,
Peppley
,
B. A.
, and
Karan
,
K.
,
2005
, “
An Improved Two-Dimensional Agglomerate Cathode Model to Study the Influence of Catalyst Layer Structural Parameters
,”
Electrochim. Acta
,
50
(
16–17
), pp.
3359
3374
.
12.
Xing
,
L.
,
Liu
,
X. T.
,
Alaje
,
T.
,
Kumar
,
R.
,
Mamlouk
,
M.
, and
Scott
,
K.
,
2014
, “
A Two-Phase Flow and Non-Isothermal Agglomerate Model for a Proton Exchange Membrane (PEM) Fuel Cell
,”
Energy
,
73
, pp.
618
634
.
13.
Xing
,
L.
,
Mamlouk
,
M.
, and
Scott
,
K.
,
2013
, “
A Two Dimensional Agglomerate Model for a Proton Exchange Membrane Fuel Cell
,”
Energy
,
61
, pp.
196
210
.
14.
Das
,
P. K.
,
Li
,
X.
, and
Liu
,
Z. S.
,
2008
, “
A Three-Dimensional Agglomerate Model for the Cathode Catalyst Layer of PEM Fuel Cells
,”
J. Power Sources
,
179
(
1
), pp.
186
199
.
15.
Xing
,
L.
,
Das
,
P. K.
,
Song
,
X. G.
,
Mamlouk
,
M.
, and
Scott
,
K.
,
2015
, “
Numerical Analysis of the Optimum Membrane/Ionomer Water Content of PEMFCs: The Interaction of Nafion Ionomer Content and Cathode Relative Humidity
,”
Appl. Energy
,
138
(
1
), pp.
242
257
.
16.
Yin
,
K. M.
,
2007
, “
A Thin-Film/Agglomerate Model of a Proton-Exchange-Membrane Fuel Cell Cathode Catalyst Layer With Consideration of Solid-Polymer-Electrolyte Distribution
,”
J. Appl. Electrochem.
,
37
(
8
), pp.
971
982
.
17.
Das
,
P. K.
,
Li
,
X.
, and
Liu
,
Z. S.
,
2007
, “
Analytical Approach to Polymer Electrolyte Membrane Fuel Cell Performance and Optimization
,”
J. Electroanal. Chem.
,
604
(
2
), pp.
72
90
.
18.
Das
,
P. K.
,
Li
,
X.
, and
Liu
,
Z. S.
,
2010
, “
Effective Transport Coefficients in PEM Fuel Cell Catalyst and Gas Diffusion Layers: Beyond Bruggeman Approximation
,”
Appl. Energy
,
87
(
9
), pp.
2785
2796
.
19.
Siegel
,
C.
,
2008
, “
Review of Computational Heat and Mass Transfer Modeling in Polymer-Electrolyte-Membrane (PEM) Fuel Cells
,”
Energy
,
33
(
9
), pp.
1331
1352
.
20.
Rho
,
Y. W.
,
Velev
,
O. A.
,
Srinivasan
,
S.
, and
Kho
,
Y. T.
,
1994
, “
Mass-Transport Phenomena in Proton-Exchange Membrane Fuel-Cells Using O2/He, O2/Ar, and O2/N2 Mixtures—1: Experimental-Analysis
,”
J. Electrochem. Soc.
,
141
(
8
), pp.
2084
2088
.
21.
Rho
,
Y. W.
,
Srinivasan
,
S.
, and
Kho
,
Y. T.
,
1994
, “
Mass-Transport Phenomena in Proton-Exchange Membrane Fuel-Cells Using O2/He, O2/Ar, and O2/N2 Mixtures—2: Theoretical-Analysis
,”
J. Electrochem. Soc.
,
141
(
8
), pp.
2089
2096
.
22.
Liu
,
X. L.
,
Lou
,
G. F.
, and
Wen
,
Z.
,
2010
, “
Three-Dimensional Two-Phase Flow Model of Proton Exchange Membrane Fuel Cell With Parallel Gas Distributors
,”
J. Power Sources
,
195
(
9
), pp.
2764
2773
.
23.
Parthasarathy
,
A.
,
Srinivasan
,
S.
,
Appleby
,
A. J.
, and
Martin
,
C. R.
,
1992
, “
Pressure-Dependence of the Oxygen Reduction Reaction at the Platinum Microelectrode Nafion Interface—Electrode-Kinetics and Mass-Transport
,”
J. Electrochem. Soc.
,
139
(
10
), pp.
2856
2862
.
24.
Bernardi
,
D. M.
, and
Verbrugge
,
M. W.
,
1992
, “
A Mathematical-Model of the Solid-Polymer-Electrolyte Fuel-Cell
,”
J. Electrochem. Soc.
,
139
(
9
), pp.
2477
2491
.
25.
Wu
,
H.
,
Li
,
X.
, and
Berg
,
P.
,
2009
, “
On the Modeling of Water Transport in Polymer Electrolyte Membrane Fuel Cells
,”
Electrochim. Acta
,
54
(
27
), pp.
6913
6927
.
26.
Springer
,
T. E.
,
Zawodzinski
,
T. A.
, and
Gottesfeld
,
S.
,
1991
, “
Polymer Electrolyte Fuel-Cell Model
,”
J. Electrochem. Soc.
,
138
(
8
), pp.
2334
2342
.
27.
Udell
,
K. S.
,
1985
, “
Heat-Transfer in Porous-Media Considering Phase-Change and Capillarity—the Heat Pipe Effect
,”
Int. J. Heat Mass Transfer
,
28
(
2
), pp.
485
495
.
28.
Ren
,
X. M.
,
Price
,
S. C.
,
Jackson
,
A. C.
,
Pomerantz
,
N.
, and
Beyer
,
F. L.
,
2014
, “
Highly Conductive Anion Exchange Membrane for High Power Density Fuel-Cell Performance
,”
ACS Appl. Mater. Interfaces
,
6
(
16
), pp.
13330
13333
.
29.
Kruusenberg
,
I.
,
Matisen
,
L.
,
Shah
,
Q.
,
Kannan
,
A. M.
, and
Tammeveski
,
K.
,
2012
, “
Non-Platinum Cathode Catalysts for Alkaline Membrane Fuel Cells
,”
Int. J. Hydrogen Energy
,
37
(
5
), pp.
4406
4412
.
30.
Leng
,
Y. J.
,
Wang
,
L. Z.
,
Hickner
,
M. A.
, and
Wang
,
C. Y.
,
2015
, “
Alkaline Membrane Fuel Cells With in-Situ Cross-Linked Ionomers
,”
Electrochim. Acta
,
152
, pp.
93
100
.
You do not currently have access to this content.