Abstract

Cell balancing control for Li-ion battery pack plays an important role in the battery management system. It contributes to maintaining the maximum usable capacity, extending the cycle life of cells, and preventing overheating and thermal runaway during operation. This paper presents an optimal control of active cell balancing for serially connected battery pack that maintains the cell’s current and temperature in a suitable range during the equalizing process. Using the cell-to-cell balancing circuit based on CuK converter for two adjacent cells, the state of charge (SoC) and temperature dynamic of cells in the pack are modeled. Then, the optimal control problem for active cell balancing is established with constraints on cells’ current and temperature. The solution of this nonlinear optimal problem solved using sequential quadratic programming (SQP) is the optimal duty fed to the cell balancing circuits. The experimental test is applied to the battery pack of seven Samsung cells connected in series, and the reliable and efficient results show that the cell balancing process takes place shortly and adaptively depending on the discharge/charge current of the pack, the desired temperature increasing limit, and technical constraints of balancing circuits.

References

1.
Marongiu
,
A.
,
Nussbaum
,
W.
,
Waag
,
W.
,
Garmendia
,
M.
, and
Sauer
,
D.
,
2016
, “
Comprehensive Study of the Influence of Aging on the Hysteresis Behavior of a Lithium Iron Phosphate Cathode-Based Lithium Ion Battery. An Experimental Investigation of the Hysteresis
,”
Appl. Energy
,
171
, pp.
629
645
.
2.
Hoque
,
M.
,
Hannan
,
M.
, and
Mohamed
,
A.
,
2017
, “
Model Development of Charge Equalization Controller for Lithium-Ion Battery
,”
Adv. Sci. Lett.
,
23
(
6
), pp.
5255
5259
.
3.
Manzetti
,
S.
, and
Mariasiu
,
F.
,
2015
, “
Electric Vehicle Battery Technologies: From Present State to Future Systems
,”
Renew. Sustain. Energy Rev.
,
51
, pp.
1004
1012
.
4.
Yi
,
F.
,
Mei
,
J.
, and
Zhu
,
R.
,
2016
, “
Key Strategies for Enhancing the Cycling Stability and Rate Capacity of LiNi0.5Mn1.5O4 as High-Voltage Cathode Materials for High Power Lithium-Ion Batteries
,”
J. Power Sources
,
316
, pp.
85
105
.
5.
Baronti
,
F.
,
Rienzo
,
R.
,
Papazafiropulos
,
N.
,
Roncella
,
R.
, and
Saletti
,
R.
,
2014
, “
Investigation of Series-Parallel Connections of Multi-Module Batteries for Electrified Vehicles
,”
2014 IEEE International Electric Vehicle Conference IEVC
,
Florence, Italy
,
Sept. 9–11, pp. 1–6
.
6.
Fill
,
A.
, and
Birke
,
P.
,
2019
, “
Impacts of Cell Topology, Parameter Distributions and Current Profile on the Usable Power and Energy of Lithium-Ion Batteries
,”
International Conference on Smart Energy Systems and Technologies SEST 2019
,
Porto, Portugal
,
Sept. 9–11
, pp.
1
6
.
7.
Naguib
,
M.
, and
Kollmeyer
,
P.
,
2021
, “
Lithium-Ion Battery Pack Robust State of Charge Estimation, Cell Inconsistency, and Balancing: Review
,”
IEEE Access
,
9
, pp.
50570
50582
.
8.
Bruen
,
T.
, and
Marco
,
J.
,
2016
, “
Modelling and Experimental Evaluation of Parallel Connected Lithium Ion Cells for an Electric Vehicle Battery System
,”
J. Power Sources
,
310
, pp.
91
101
.
9.
Rothgang
,
S.
,
Baumhöfer
,
T.
,
Hoek
,
H.
,
Lange
,
T.
,
Doncker
,
R. W.
, and
Sauer
,
D. U.
,
2015
, “
Modular Battery Design for Reliable, Flexible and Multi Technology Energy Storage Systems
,”
Appl. Energy
,
137
, pp.
931
937
.
10.
Bi
,
K.
,
Sun
,
L.
,
An
,
Q.
, and
Duan
,
J.
,
2019
, “
Active SOC Balancing Control Strategy for Modular Multilevel Super Capacitor Energy Storage System
,”
IEEE Trans. Power Electron.
,
34
(
5
), pp.
4981
4992
.
11.
Zhang
,
A.
,
Zhang
,
A.
,
Hu
,
L.
, and
Huang
,
L.
,
2020
, “
Active Cell Balancing of Lithium-Ion Battery Pack Based on Average State of Charge
,”
Int. J. Energy Res.
,
44
(
4
), pp.
2535
2548
.
12.
Duraisamy
,
T.
, and
Kaliyaperumal
,
D.
,
2021
, “
Machine Learning-Based Optimal Cell Balancing Mechanism for Electric Vehicle Battery Management System
,”
IEEE Access
,
9
, pp.
132846
132861
.
13.
Kremer
,
P.
,
Cigarini
,
F.
,
Göhlich
,
D.
, and
Park
,
S.
,
2021
, “
Active Cell Balancing for Life Cycle Extension of Lithium-Ion Batteries Under Thermal Gradient
,”
2021 IEEE/ACM International Symposium on Low Power Electronics and Design (ISLPED)
,
Boston, MA
,
July 26–28
, pp.
1
6
.
14.
Hemavathi
,
S.
,
2021
, “
Overview of Cell Balancing Methods for Li-Ion Battery Technology
,”
Energy Storage
,
203
(
2
), pp.
1
12
.
15.
Guo
,
X.
,
Geng
,
J.
,
Liu
,
Z.
,
Longyun
,
K.
, and
Xu
,
X.
,
2020
, “
Active Balancing Method for Series Battery Pack Based on Flyback Converter
,”
IET Circuits Dev. Syst.
,
14
(
8
), pp.
1129
1134
.
16.
Zhang
,
D.
,
Zhu
,
G. R.
,
He
,
S. J.
,
Qiu
,
S.
,
Ma
,
Y.
,
Wu
,
Q. M.
, and
Chen
,
W.
,
2015
, “
Balancing Control Strategy for Li-Ion Batteries String Based on Dynamic Balanced Point
,”
Energies
,
8
(
3
), pp.
1830
1847
.
17.
Jiang
,
L.
,
Yuan
,
S.
,
Wu
,
H.
,
Yin
,
C.
, and
Miao
,
W.
,
2016
, “
Electro-Thermal Modeling and Experimental Verification for 18650 Li-Ion Cell
,”
2016 IEEE Vehicle Power and Propulsion Conference (VPPC)
,
Hangzhou, China
,
Oct. 17–20
, pp.
1
5
.
18.
Benger
,
R.
,
Wenzl
,
H.
,
Beck
,
H.
,
Jiang
,
M.
, and
Detlef
,
S.
,
2009
, “
Electrochemical and Thermal Modeling of Lithium-Ion Cells for Use in HEV or EV Application
,”
World Electr. Veh. J.
,
3
(
2
), pp.
342
351
.
19.
Shuai
,
M.
,
Modi
,
J.
,
Peng
,
T.
,
Chengyi
,
S.
,
Jianbo
,
W.
,
Jun
,
W.
,
Tao
,
D.
, and
Wen
,
S.
,
2018
, “
Temperature Effect and Thermal Impact in Lithium-Ion Batteries: A Review
,”
Prog. Nat. Sci. Mater. Int.
,
28
(
6
), pp.
653
666
.
20.
Li
,
H.
,
Zhou
,
D.
,
Du
,
C.
, and
Zhang
,
C.
,
2021
, “
Parametric Study on the Safety Behavior of Mechanically Induced Short Circuit for Lithium-Ion Pouch Batteries
,”
ASME J. Electrochem. Energy Convers. Storage
,
18
(
2
), p.
020904
.
21.
Zhang
,
C.
,
Santhanagopalan
,
S.
,
Michael
,
A.
,
Sprague
,
A.
, and
Pesaran
,
A.
,
2015
, “
A Representative-Sandwich Model for Simultaneously Coupled Mechanical-Electrical-Thermal Simulation of a Lithium-Ion Cell Under Quasi-Static Indentation Tests
,”
J. Power Sources
,
298
, pp.
309
321
.
22.
Wu
,
W.
,
Shuangfeng
,
W.
,
Wei
,
W.
, and
Kai
,
C.
,
2019
, “
A Critical Review of Battery Thermal Performance and Liquid Based Battery Thermal Management
,”
Energy Convers. Manage.
,
182
, pp.
262
281
.
23.
Zhen
,
Q.
,
Yimin
,
L.
, and
Zhonghao
,
R.
,
2016
, “
Thermal Performance of Lithium-Ion Battery Thermal Management System by Using Mini-Channel Cooling
,”
Energy Convers. Manage.
,
126
, pp.
622
631
.
24.
Tianshi
,
Z.
,
Qing
,
G.
,
Guohua
,
W.
,
Yanlong
,
G.
,
Yan
,
W.
,
Wendi
,
B.
, and
Dezhi
,
Z.
,
2017
, “
Investigation on the Promotion of Temperature Uniformity for the Designed Battery Pack With Liquid Flow in Cooling Process
,”
Appl. Therm. Eng.
,
116
, pp.
655
662
.
25.
Poorali
,
B.
,
Adib
,
E.
, and
Farzanehfard
,
H.
,
2017
, “
Soft-Switching DC-DC Ćuk Converter Operating in Discontinuous-Capacitor-Voltage Mode
,”
IET Power Electron.
,
10
(
13
), pp.
679
1686
.
26.
Maksimovic
,
D.
, and
Ćuk
,
S.
,
1991
, “
A Unified Analysis of PWM Converters in Discontinuous Modes
,”
IEEE Trans. Power Electron.
,
6
(
3
), pp.
476
490
.
27.
Van
,
C. N.
,
Vinh
,
T. N.
,
Ngo
,
M.-D.
, and
Ahn
,
S.-J.
,
2021
, “
Optimal SoC Balancing Control for Lithium-Ion Battery Cells Connected in Series
,”
Energies
,
14
(
10
), pp.
1
18
.
28.
Omariba
,
Z. B.
,
Zhang
,
L.
, and
Sun
,
D.
,
2019
, “
Review of Battery Cell Balancing Methodologies for Optimizing Battery Pack Performance in Electric Vehicles
,”
IEEE Access
,
7
, pp.
129335
129352
.
29.
Yifei
,
Y.
,
Elena
,
V.
,
Daniel
,
W.
,
Yashraj
,
T.
, and
Yue
,
G.
,
2021
, “
Distributed Thermal Monitoring of Lithium Ion Batteries With Optical Fibre Sensors
,”
J. Energy Storage
,
39
, pp.
1
11
.
30.
Schittkowski
,
K.
,
1985
, “
NLQPL: A FORTRAN-Subroutine Solving Constrained Nonlinear Programming Problems
,”
Ann. Oper. Res.
,
5
(
1–4
), pp.
485
500
.
31.
Fletcher
,
R.
,
1987
,
Practical Methods of Optimization
,
John Wiley and Sons
,
Hoboken, NJ
.
32.
Gill
,
P. E.
,
Murray
,
W.
, and
Wright
,
M. H.
,
1981
,
Practical Optimization
,
London Academic Press
,
London
.
33.
Powell
,
M. J. D.
,
1983
,
Variable Metric Methods for Constrained Optimization, Mathematical Programming: The State of the Art
,
Springer Verlag
,
New York
, pp.
288
311
.
You do not currently have access to this content.