Abstract

The internal battery parameters of the lithium-ion battery energy storage system may be inconsistent due to different aging degrees during the operation, and the thermal effect can also threaten the safety of the system. In this paper, based on the second-order resistor–capacitor equivalent circuit model and the dual extended Kalman filter (DEKF) algorithm, an electrical simulation model of a LIB pack with inconsistent parameters considering the thermal effect is established, in which state of charge (SOC) and state of health (SOH) are estimated using DEKF, while the temperature is calculated by a thermal module. The simulation results show that the DEKF algorithm has a good effect on battery state and parameter estimation, with the root-mean-square error of voltage is lower than 0.01 V and SOC mean absolute error (MAE) is below 1.50%, while SOH error is 3.37%. In addition, the thermal module can provide an accurate estimation of the inconsistent temperature rise of the battery pack, and the MAE between the model-calculated temperature and the experiment is no more than 6.60%. The results provide the basic data for the scale-up of the electrothermal co-simulation model of the LIB energy storage system.

References

1.
Jiang
,
B.
,
Zhu
,
J.
,
Wang
,
X.
,
Wei
,
X.
,
Shang
,
W.
, and
Dai
,
H.
,
2022
, “
A Comparative Study of Different Features Extracted From Electrochemical Impedance Spectroscopy in State of Health Estimation for Lithium-Ion Batteries
,”
Appl. Energy
,
322
, p.
119502
.
2.
Zhu
,
J.
,
Knapp
,
M.
,
Sørensen
,
D. R.
,
Heere
,
M.
,
Darma
,
M. S. D.
,
Müller
,
M.
,
Mereacre
,
L.
, et al
,
2021
, “
Investigation of Capacity Fade for 18650-Type Lithium-Ion Batteries Cycled in Different State of Charge (SoC) Ranges
,”
J. Power Sources
,
489
, pp.
229422
.
3.
Bresser
,
D.
,
Hosoi
,
K.
,
Howell
,
D.
,
Li
,
H.
,
Zeisel
,
H.
,
Amine
,
K.
, and
Passerini
,
S.
,
2018
, “
Perspectives of Automotive Battery R&D in China, Germany, Japan, and the USA
,”
J. Power Sources
,
382
, pp.
176
178
.
4.
Wu
,
J.
,
Xu
,
H.
, and
Zhu
,
P.
,
2023
, “
State-of-Charge and State-of-Health Joint Estimation of Lithium-Ion Battery Based on Iterative Unscented Kalman Particle Filtering Algorithm With Fused Rauch–Tung–Striebel Smoothing Structure
,”
ASME J. Electrochem. Energy Convers. Storage
,
20
(
4
), p.
041008
.
5.
de Biasi
,
L.
,
Schwarz
,
B.
,
Brezesinski
,
T.
,
Hartmann
,
P.
,
Janek
,
J.
, and
Ehrenberg
,
H.
,
2019
, “
Chemical, Structural, and Electronic Aspects of Formation and Degradation Behavior on Different Length Scales of Ni-Rich NCM and Li-Rich HE-NCM Cathode Materials in Li-Ion Batteries
,”
Adv. Mater.
,
31
(
26
), p.
1900985
.
6.
Xiong
,
R.
,
Pan
,
Y.
,
Shen
,
W.
,
Li
,
H.
, and
Sun
,
F.
,
2020
, “
Lithium-Ion Battery Aging Mechanisms and Diagnosis Method for Automotive Applications: Recent Advances and Perspectives
,”
Renewable Sustainable Energy Rev.
,
131
, p.
110048
.
7.
Dai
,
H.
,
Jiang
,
B.
,
Hu
,
X.
,
Lin
,
X.
,
Wei
,
X.
, and
Pecht
,
M.
,
2021
, “
Advanced Battery Management Strategies for a Sustainable Energy Future: Multilayer Design Concepts and Research Trends
,”
Renewable Sustainable Energy Rev.
,
138
, p.
110480
.
8.
Li
,
Y.
,
Stroe
,
D.-I.
,
Cheng
,
Y.
,
Sheng
,
H.
,
Sui
,
X.
, and
Teodorescu
,
R.
,
2021
, “
On the Feature Selection for Battery State of Health Estimation Based on Charging–Discharging Profiles
,”
J. Energy Storage
,
33
, p.
102122
.
9.
Wang
,
Y.
,
Tian
,
J.
,
Sun
,
Z.
,
Wang
,
L.
,
Xu
,
R.
,
Li
,
M.
, and
Chen
,
Z.
,
2020
, “
A Comprehensive Review of Battery Modeling and State Estimation Approaches for Advanced Battery Management Systems
,”
Renewable Sustainable Energy Rev.
,
131
, p.
110015
.
10.
Jiang
,
B.
,
Dai
,
H.
,
Wei
,
X.
, and
Xu
,
T.
,
2019
, “
Joint Estimation of Lithium-Ion Battery State of Charge and Capacity Within an Adaptive Variable Multi-Timescale Framework Considering Current Measurement Offset
,”
Appl. Energy
,
253
, p.
113619
.
11.
Zheng
,
Y.
,
Ouyang
,
M.
,
Han
,
X.
,
Lu
,
L.
, and
Li
,
J.
,
2018
, “
Investigating the Error Sources of the Online State of Charge Estimation Methods for Lithium-Ion Batteries in Electric Vehicles
,”
J. Power Sources
,
377
, pp.
161
188
.
12.
Zhang
,
Z.
,
Jiang
,
L.
,
Zhang
,
L.
, and
Huang
,
C.
,
2021
, “
State-of-Charge Estimation of Lithium-Ion Battery Pack by Using an Adaptive Extended Kalman Filter for Electric Vehicles
,”
J. Energy Storage
,
37
, p.
102457
.
13.
He
,
H.
,
Xiong
,
R.
,
Zhang
,
X.
,
Sun
,
F.
, and
Fan
,
J.
,
2011
, “
State-of-Charge Estimation of the Lithium-Ion Battery Using an Adaptive Extended Kalman Filter Based on an Improved Thevenin Model
,”
IEEE Trans. Veh. Technol.
,
60
(
4
), pp.
1461
1469
.
14.
Wan
,
E. A.
, and
van der Merwe
,
R.
,
2001
, “The Unscented Kalman Filter,”
Kalman Filtering and Neural Networks
,
John Wiley & Sons, Ltd
,
Hoboken, NJ
, pp.
221
280
.
15.
Liu
,
G.
,
Xu
,
C.
,
Jiang
,
K.
, and
Wang
,
K.
,
2019
, “
State of Charge and Model Parameters Estimation of Liquid Metal Batteries Based on Adaptive Unscented Kalman Filter
,”
Energy Procedia
,
158
, pp.
4477
4482
.
16.
Xuan
,
D.-J.
,
Shi
,
Z.
,
Chen
,
J.
,
Zhang
,
C.
, and
Wang
,
Y.-X.
,
2020
, “
Real-Time Estimation of State-of-Charge in Lithium-Ion Batteries Using Improved Central Difference Transform Method
,”
J. Cleaner Prod.
,
252
, p.
119787
.
17.
Arasaratnam
,
I.
, and
Haykin
,
S.
,
2009
, “
Cubature Kalman Filters
,”
IEEE Trans. Automat. Contr.
,
54
(
6
), pp.
1254
1269
.
18.
Wassiliadis
,
N.
,
Adermann
,
J.
,
Frericks
,
A.
,
Pak
,
M.
,
Reiter
,
C.
,
Lohmann
,
B.
, and
Lienkamp
,
M.
,
2018
, “
Revisiting the Dual Extended Kalman Filter for Battery State-of-Charge and State-of-Health Estimation: A Use-Case Life Cycle Analysis
,”
J. Energy Storage
,
19
, pp.
73
87
.
19.
Azis
,
N. A.
,
Joelianto
,
E.
, and
Widyotriatmo
,
A.
,
2019
, “
State of Charge (SoC) and State of Health (SoH) Estimation of Lithium-Ion Battery Using Dual Extended Kalman Filter Based on Polynomial Battery Model
,”
2019 6th International Conference on Instrumentation, Control, and Automation (ICA)
,
Bandung, Indonesia
,
July 31–Aug. 2
, pp.
88
93
.
20.
Shrivastava
,
P.
,
Soon
,
T. K.
,
Idris
,
M. Y. I. B.
,
Mekhilef
,
S.
, and
Adnan
,
S. B. R. S.
,
2022
, “
Model-Based State of X Estimation of Lithium-Ion Battery for Electric Vehicle Applications
,”
Int. J. Energy Res.
,
46
(
8
), pp.
10704
10723
.
21.
Wang
,
C.
,
Wang
,
S.
,
Zhou
,
J.
,
Qiao
,
J.
,
Yang
,
X.
, and
Xie
,
Y.
,
2023
, “
A Novel Back Propagation Neural Network-Dual Extended Kalman Filter Method for State-of-Charge and State-of-Health Co-Estimation of Lithium-Ion Batteries Based on Limited Memory Least Square Algorithm
,”
J. Energy Storage
,
59
, p.
106563
.
22.
Tahir
,
M. U.
,
Anees
,
M.
,
Khan
,
H. A.
,
Khan
,
I.
,
Zaffar
,
N.
, and
Moaz
,
T.
,
2021
, “
Modeling and Evaluation of Nickel Manganese Cobalt Based Li-Ion Storage for Stationary Applications
,”
J. Energy Storage
,
36
, p.
102346
.
23.
Guo
,
F.
,
Hu
,
G.
,
Xiang
,
S.
,
Zhou
,
P.
,
Hong
,
R.
, and
Xiong
,
N.
,
2019
, “
A Multi-Scale Parameter Adaptive Method for State of Charge and Parameter Estimation of Lithium-Ion Batteries Using Dual Kalman Filters
,”
Energy
,
178
, pp.
79
88
.
24.
LeBel
,
F.-A.
,
Messier
,
P.
,
Sari
,
A.
, and
Trovão
,
J. P. F.
,
2022
, “
Lithium-Ion Cell Equivalent Circuit Model Identification by Galvanostatic Intermittent Titration Technique
,”
J. Energy Storage
,
54
, p.
105303
.
25.
Huang
,
D.
,
Chen
,
Z.
,
Zheng
,
C.
, and
Li
,
H.
,
2019
, “
A Model-Based State-of-Charge Estimation Method for Series-Connected Lithium-Ion Battery Pack Considering Fast-Varying Cell Temperature
,”
Energy
,
185
, pp.
847
861
.
26.
Li
,
D.
, and
Yang
,
L.
,
2021
, “
Remaining Useful Life Prediction of Lithium Battery Based on Sequential CNN–LSTM Method
,”
ASME J. Electrochem. Energy Convers. Storage
,
18
(
4
), p.
041005
.
27.
Bairwa
,
B. L.
,
Pareek
,
K.
, and
Hampannavar
,
S. k.
,
2021
, “
Investigation on Lithium Ion Battery Equivalent Circuit Models for Dynamic Load Profiles
,”
Energy Storage
,
3
(
2
), p.
e231
.
28.
Nelson
,
P.
,
Dees
,
D.
,
Amine
,
K.
, and
Henriksen
,
G.
,
2002
, “
Modeling Thermal Management of Lithium-Ion PNGV Batteries
,”
J. Power Sources
,
110
(
2
), pp.
349
356
.
29.
Wen
,
J.
,
Chen
,
X.
,
Li
,
X.
, and
Li
,
Y.
,
2022
, “
SOH Prediction of Lithium Battery Based on IC Curve Feature and BP Neural Network
,”
Energy
,
261
, p.
125234
.
30.
Wang
,
L.
,
Cheng
,
Y.
, and
Zhao
,
X.
,
2015
, “
A LiFePO4 Battery Pack Capacity Estimation Approach Considering In-Parallel Cell Safety in Electric Vehicles
,”
Appl. Energy
,
142
, pp.
293
302
.
31.
Lai
,
X.
,
Jin
,
C.
,
Yi
,
W.
,
Han
,
X.
,
Feng
,
X.
,
Zheng
,
Y.
, and
Ouyang
,
M.
,
2021
, “
Mechanism, Modeling, Detection, and Prevention of the Internal Short Circuit in Lithium-Ion Batteries: Recent Advances and Perspectives
,”
Energy Storage Mater.
,
35
, pp.
470
499
.
32.
Park
,
J.
,
Kim
,
K.
,
Park
,
S.
,
Baek
,
J.
, and
Kim
,
J.
,
2021
, “
Complementary Cooperative SOC/Capacity Estimator Based on the Discrete Variational Derivative Combined With the DEKF for Electric Power Applications
,”
Energy
,
232
, p.
121023
.
33.
Luzi
,
M.
,
Paschero
,
M.
,
Rizzi
,
A.
,
Maiorino
,
E.
, and
Mascioli
,
F. M. F.
,
2019
, “
A Novel Neural Networks Ensemble Approach for Modeling Electrochemical Cells
,”
IEEE Trans. Neural Netw. Learn. Syst.
,
30
(
2
), pp.
343
354
.
34.
Dai
,
H.
,
Guo
,
P.
,
Wei
,
X.
,
Sun
,
Z.
, and
Wang
,
J.
,
2015
, “
ANFIS (Adaptive Neuro-Fuzzy Inference System) Based Online SOC (State of Charge) Correction Considering Cell Divergence for the EV (Electric Vehicle) Traction Batteries
,”
Energy
,
80
, pp.
350
360
.
35.
Miniguano
,
H.
,
Barrado
,
A.
,
Lázaro
,
A.
,
Zumel
,
P.
, and
Fernández
,
C.
,
2020
, “
General Parameter Identification Procedure and Comparative Study of Li-Ion Battery Models
,”
IEEE Trans. Veh. Technol.
,
69
(
1
), pp.
235
245
.
36.
Peng
,
X.
,
Li
,
Y.
,
Yang
,
W.
, and
Garg
,
A.
,
2021
, “
Real-Time State of Charge Estimation of the Extended Kalman Filter and Unscented Kalman Filter Algorithms Under Different Working Conditions
,”
ASME J. Electrochem. Energy Convers. Storage
,
18
(
4
), p.
041007
.
37.
Huang
,
X.
,
Li
,
Y.
,
Meng
,
J.
,
Sui
,
X.
,
Teodorescu
,
R.
, and
Stroe
,
D.-I.
,
2020
, “
The Effect of Pulsed Current on the Performance of Lithium-Ion Batteries
,”
2020 IEEE Energy Conversion Congress and Exposition (ECCE)
,
Vancouver, BC, Canada
,
Oct. 10–14
.
38.
Plett
,
G. L.
,
2004
, “
Extended Kalman Filtering for Battery Management Systems of LiPB-Based HEV Battery Packs: Part 3. State and Parameter Estimation
,”
J. Power Sources
,
134
(
2
), pp.
277
292
.
39.
Li
,
S.
,
Li
,
K.
,
Xiao
,
E.
, and
Wong
,
C.-K.
,
2020
, “
Joint SoC and SoH Estimation for Zinc–Nickel Single-Flow Batteries
,”
IEEE Trans. Ind. Electron.
,
67
(
10
), pp.
8484
8494
.
40.
Jiang
,
C.
,
Wang
,
S.
,
Wu
,
B.
,
Fernandez
,
C.
,
Xiong
,
X.
, and
Coffie-Ken
,
J.
,
2021
, “
A State-of-Charge Estimation Method of the Power Lithium-Ion Battery in Complex Conditions Based on Adaptive Square Root Extended Kalman Filter
,”
Energy
,
219
, p.
119603
.
41.
Lee
,
S. J.
,
Kim
,
J. H.
,
Lee
,
J. M.
, and
Cho
,
B. H.
,
2007
, “
The State and Parameter Estimation of an Li-Ion Battery Using a New OCV-SOC Concept
,”
2007 IEEE Power Electronics Specialists Conference
,
Orlando, FL
,
June 17–21
, pp.
2799
2803
.
42.
Liu
,
W.
,
Zhou
,
H.
,
Tang
,
Z.
, and
Wang
,
T.
,
2022
, “
State of Charge Estimation Algorithm Based on Fractional-Order Adaptive Extended Kalman Filter and Unscented Kalman Filter
,”
ASME J. Electrochem. Energy Convers. Storage
,
19
(
2
), p.
021005
.
43.
Kharisma
,
M. D.
,
Ridwan
,
M.
,
Ilmiawan
,
A. F.
,
Nurman
,
F. A.
, and
Rizal
,
S.
,
2019
, “
Modeling and Simulation of Lithium-Ion Battery Pack Using Modified Battery Cell Model
,”
2019 6th International Conference on Electric Vehicular Technology (ICEVT)
,
Bali, Indonesia
,
Nov. 18–21
, IEEE, pp.
25
30
.
You do not currently have access to this content.