Abstract

The performance and service life of ultracapacitors are highly dependent on accurate modeling and state-of-charge (SOC) estimating. To overcome the model parameter errors caused by the various temperatures and different SOC intervals, the H infinity filter (HIF) is employed to estimate the ultracapacitor SOC based on a variable temperature model. For the application of the HIF method, the Thevenin model is first developed with a small terminal voltage estimation error. Then, the model parameters are optimally identified using the ant colony optimization (ACO) algorithm. Next, a variable temperature model is established to improve the adaptability of the ultracapacitor model, and the HIF is utilized for the ultracapacitor SOC estimation. Finally, to verify the performance of the variable temperature model and the proposed SOC estimation method, a series of experiments are conducted. The analysis results illustrate that the mean absolute error (MAE) of the SOC estimation values based on the variable temperature model is decreased by 39.62% compared to the one based on the nonvariable temperature model. Meanwhile, the proposed state estimation scheme based on the variable temperature model is accurate with estimation values maximum error (ME) and root-mean-squared error (RMSE) less than 0.80% and 0.60%, respectively. The HIF-based SOC estimation method also shows a good robustness with a short convergence time within 90.00 s when the SOC initial error is set to 0.20.

References

1.
Xiong
,
R.
,
Wang
,
J.
,
Shen
,
W.-X.
,
Tian
,
J.-P.
, and
Mu
,
H.
,
2021
, “
Co-estimation of State of Charge and Capacity for Lithium-Ion Batteries With Multi-stage Model Fusion Method
,”
Engineering
,
7
, pp.
1469
1482
.
2.
Zhang
,
Y.-Z.
, and
Zhao
,
M.-Y.
,
2023
, “
Cloud-Based In-Situ Battery Life Prediction and Classification Using Machine Learning
,”
Energy Stor. Mater.
,
57
, pp.
346
359
.
3.
Wang
,
H.-C.
,
Pan
,
Y.-J.
,
Liu
,
X.
,
Cao
,
Y.-Z.
,
Liu
,
Y.
,
Zhang
,
X.-M.
,
Mao
,
Y.
, and
Liu
,
B.-H.
,
2022
, “
Criteria and Design Guidance for Lithium-Ion Battery Safety From a Material Perspective
,”
J. Mater. Chem. A
,
10
(
12
), pp.
6538
6550
.
4.
Xiong
,
R.
,
Li
,
Z.-Y.
,
Yang
,
R.-X.
,
Shen
,
W.-X.
,
Ma
,
S.-X.
, and
Sun
,
F.-C.
,
2022
, “
Fast Self-Heating Battery With Anti-Aging Awareness for Freezing Climates Application
,”
Appl. Energy
,
324
, p.
119762
.
5.
Liu
,
B.-H.
,
Duan
,
X.-D.
,
Yuan
,
C.-H.
,
Wang
,
L.-B.
,
Li
,
J.-N.
,
Fiangan
,
D. P.
,
Feng
,
B.
, and
Xu
,
J.
,
2021
, “
Quantifying and Modeling of Stress-Driven Short-Circuits in Lithium-Ion Batteries in Electrified Vehicles
,”
J. Mater. Chem. A
,
9
(
11
), pp.
7102
7113
.
6.
Liu
,
Y.
,
Mao
,
Y.
,
Wang
,
H.-C.
,
Pan
,
Y.-J.
, and
Liu
,
B.-H.
,
2023
, “
Internal Short Circuit of Lithium Metal Batteries Under Mechanical Abuse
,”
Int. J. Mech. Sci.
,
245
, p.
108130
.
7.
Wang
,
C.
,
Fang
,
C.-C.
,
Tang
,
A.-H.
,
Huang
,
B.
, and
Zhang
,
Z.-G.
,
2022
, “
A Novel Ultracapacitor State-of-Charge Fusion Estimation Method for Electric Vehicles Considering Temperature Uncertainty
,”
Energies
,
15
(
12
), pp.
22
33
.
8.
Zhang
,
L.
,
Hu
,
X.-S.
,
Wang
,
Z.-P.
,
Ruan
,
J.-G.
,
Ma
,
C.-B.
,
Song
,
Z.-Y.
,
Dorrell
,
D. G.
, and
Pecht
,
M. G.
,
2021
, “
Hybrid Electrochemical Energy Storage Systems: An Overview for Smart Grid and Electrified Vehicle Applications
,”
Renew. Sustain. Energy Rev.
,
139
, p.
110581
.
9.
He
,
Y.
,
Guo
,
S.
,
Dong
,
P.-X.
,
Wang
,
C.
,
Huang
,
J.
, and
Zhou
,
J.-X.
,
2022
, “
Techno-Economic Comparison of Different Hybrid Energy Storage Systems for Off-Grid Renewable Energy Applications Based on a Novel Probabilistic Reliability Index
,”
Appl. Energy
,
328
, p.
120225
.
10.
Song
,
Z.-Y.
,
Li
,
J.-Q.
,
Han
,
X.-B.
,
Xu
,
L.-F.
,
Lu
,
L.-G.
, and
Ouyang
,
M.-G.
,
2014
, “
Multi-Objective Optimization of a Semi-Active Battery/Supercapacitor Energy Storage System for Electric Vehicles
,”
Appl. Energy
,
135
, pp.
212
224
.
11.
Liu
,
C.
,
Li
,
Q.
, and
Wang
,
K.
,
2021
, “
State-of-Charge Estimation and Remaining Useful Life Prediction of Supercapacitors
,”
Renew. Sustain. Energy Rev.
,
150
, p.
111408
.
12.
Saha
,
P.
,
Dey
,
S.
, and
Khanra
,
M.
,
2020
, “
Modeling and State-of-Charge Estimation of Supercapacitor Considering Leakage Effect
,”
IEEE Trans. Ind. Electron.
,
67
, pp.
350
357
.
13.
Naseri
,
F.
,
Barbu
,
C.
, and
Sarikurt
,
T.
,
2022
, “
Optimal Sizing of Hybrid High-Energy/High-Power Battery Energy Storage Systems to Improve Battery Cycle Life and Charging Power in Electric Vehicle Applications
,”
J. Energy Stor.
,
55
, p.
105768
.
14.
Zhang
,
L.
,
Wang
,
Z.-P.
,
Hu
,
X.-S.
,
Sun
,
F.-C.
, and
Dorrell
,
D. G.
,
2015
, “
A Comparative Study of Equivalent Circuit Models of Ultracapacitors for Electric Vehicles
,”
J. Power Sources
,
274
, pp.
899
906
.
15.
Tian
,
J.-P.
,
Xiong
,
R.
,
Shen
,
W.-X.
,
Lu
,
J.-H.
, and
Yang
,
X.-G.
,
2021
, “
Deep Neural Network Battery Charging Curve Prediction Using 30 Points Collected in 10 min
,”
Joule
,
5
(
6
), pp.
1521
1534
.
16.
Wang
,
C.
,
Liu
,
R.
, and
Tang
,
A.
,
2022
, “
Energy Management Strategy of Hybrid Energy Storage System for Electric Vehicles Based on Genetic Algorithm Optimization and Temperature Effect
,”
J. Energy Stor.
,
51
, p.
104314
.
17.
Nadeau
,
A.
,
Hassanalieragh
,
M.
,
Sharma
,
G.
, and
Soyata
,
T.
,
2015
, “
Energy Awareness for Supercapacitors Using Kalman Filter State-of-Charge Tracking
,”
J. Power Sources
,
296
, pp.
383
391
.
18.
Ceraolo
,
M.
,
Lutzemberger
,
G.
, and
Poli
,
D.
,
2017
, “
State-of-Charge Evaluation of Supercapacitors
,”
J. Energy Stor.
,
11
, pp.
211
218
.
19.
Jarraya
,
I.
,
Masmoudi
,
F.
,
Chabchoub
,
M. H.
, and
Trabelsi
,
H.
,
2019
, “
An Online State of Charge Estimation for Lithium-Ion and Supercapacitor in Hybrid Electric Drive Vehicle
,”
J. Energy Stor.
,
26
, p.
100946
.
20.
Wang
,
Y.-J.
,
Liu
,
C.
,
Pan
,
R.
, and
Chen
,
Z.-H.
,
2017
, “
Modeling and State-of-Charge Prediction of Lithium-Ion Battery and Ultracapacitor Hybrids With a Co-Estimator
,”
Energy
,
121
, pp.
739
750
.
21.
Saha
,
P.
,
Dey
,
S.
, and
Khanra
,
M.
,
2019
, “
Accurate Estimation of State-of-Charge of Supercapacitor Under Uncertain Leakage and Open Circuit Voltage Map
,”
J. Power Sources
,
434
, p.
226696
.
22.
Duan
,
X.-D.
,
Wang
,
H.
,
Jia
,
Y.
,
Wang
,
L.
,
Liu
,
B.
, and
Xu
,
J.
,
2022
, “
A Multiphysics Understanding of Internal Short Circuit Mechanisms in Lithium-Ion Batteries Upon Mechanical Stress Abuse
,”
Energy Stor. Mater.
,
45
, pp.
667
679
.
23.
Ren
,
J.
,
Xu
,
Y.-H.
,
Zhang
,
H.-G.
,
Yang
,
F.-B.
,
Yang
,
Y.-F.
,
Wang
,
X.
,
Jin
,
P.
, and
Huang
,
D.
,
2022
, “
State of Charge Estimation of Ultracapacitor Based on Forgetting Factor Recursive Least Square and Extended Kalman Filter Algorithm at Full Temperature Range
,”
Heliyon
,
8
(
11
), p.
e11146
.
24.
Wang
,
C.-X.
,
Xiong
,
R.
,
Tian
,
J.-P.
,
Lu
,
J.-H.
, and
Zhang
,
C.-M.
,
2022
, “
Rapid Ultracapacitor Life Prediction With a Convolutional Neural Network
,”
Appl. Energy
,
305
, p.
117819
.
25.
Wu
,
C.-H.
,
Hung
,
Y.-H.
, and
Hong
,
C.-W.
,
2012
, “
On-line Supercapacitor Dynamic Models for Energy Conversion and Management
,”
Energy Convers. Manage.
,
53
(
1
), pp.
337
345
.
26.
Zhang
,
S.-X.
,
Liu
,
Z.-T.
, and
Su
,
H.-Y.
,
2023
, “
State of Health Estimation for Lithium-Ion Batteries on Few-Shot Learning
,”
Energy
,
268
, p.
126726
.
27.
Tian
,
J.-P.
,
Xiong
,
R.
,
Shen
,
W.-X.
, and
Wang
,
J.
,
2019
, “
Frequency and Time Domain Modelling and Online State of Charge Monitoring for Ultracapacitors
,”
Energy
,
176
, pp.
874
887
.
28.
Abro
,
K. A.
,
Khan
,
I.
,
Nisar
,
K. S.
, and
Atangana
,
A.
,
2021
, “
Super-criticism of Electrochemical Double Layer Capacitor for Diffusion Phenomenon: A Fractional Application of Ultracapacitor
,”
Alexandria Eng. J.
,
60
(
3
), pp.
3361
3368
.
29.
Parvini
,
Y.
,
Siegel
,
J. B.
,
Stefanopoulou
,
A. G.
, and
Vahidi
,
A.
,
2016
, “
Supercapacitor Electrical and Thermal Modeling, Identification, and Validation for a Wide Range of Temperature and Power Applications
,”
IEEE Trans. Ind. Electron.
,
63
, pp.
1574
1585
.
30.
Spyker
,
R. L.
, and
Nelms
,
R. M.
,
2000
, “
Classical Equivalent Circuit Parameters for a Double-Layer Capacitor
,”
IEEE Trans. Aerosp. Electron. Syst.
,
36
(
3
), pp.
829
836
.
31.
Hidalgo-Reyes
,
J. I.
,
Gómez-Aguilar
,
J. F.
,
Escobar-Jiménez
,
R. F.
,
Alvarado-Martínez
,
V. M.
, and
López-López
,
M. G.
,
2019
, “
Classical and Fractional-Order Modeling of Equivalent Electrical Circuits for Supercapacitors and Batteries, Energy Management Strategies for Hybrid Systems and Methods for the State of Charge Estimation: A State of the Art Review
,”
Microelectron. J.
,
85
, pp.
109
128
.
32.
Helseth
,
L. E.
,
2019
, “
Modelling Supercapacitors Using a Dynamic Equivalent Circuit With a Distribution of Relaxation Times
,”
J. Energy Stor.
,
25
, p.
100912
.
33.
Liu
,
C.
,
Wang
,
Y.-J.
,
Chen
,
Z.-H.
, and
Ling
,
Q.
,
2018
, “
A Variable Capacitance Based Modeling and Power Capability Predicting Method for Ultracapacitor
,”
J. Power Sources
,
374
, pp.
121
133
.
34.
Zhang
,
Q.
,
Li
,
Y.-M.
,
Zhu
,
J.-H.
,
Lan
,
L.-Z.
,
Li
,
C.-J.
,
Mao
,
J.-F.
,
Wang
,
F.-J.
,
Zhang
,
Z.
, and
Wang
,
L.
,
2021
, “
Ultra-Low Temperature Flexible Supercapacitor Based on Hierarchically Structured Pristine Polypyrrole Membranes
,”
Chem. Eng. J.
,
420
, p.
129712
.
35.
Liu
,
Z.-Z.
,
Zhang
,
J.-M.
,
Liu
,
J.
,
Long
,
Y.-J.
,
Fang
,
L.-M.
,
Wang
,
Q.-W.
, and
Liu
,
T.
,
2020
, “
Highly Compressible and Superior Low Temperature Tolerant Supercapacitors Based on Dual Chemically Crosslinked PVA Hydrogel Electrolytes
,”
J. Mater. Chem. A
,
8
, pp.
6219
6228
.
36.
Wu
,
Z.
,
Li
,
L.
,
Yan
,
J.-M.
, and
Zhang
,
X.-B.
,
2017
, “
Materials Design and System Construction for Conventional and New-Concept Supercapacitors
,”
Adv. Sci.
,
4
(
6
), p.
1600382
.
37.
Chiang
,
C.-J.
,
Yang
,
J.-L.
, and
Cheng
,
W.-C.
,
2013
, “
Temperature and State-of-Charge Estimation in Ultracapacitors Based on Extended Kalman Filter
,”
J. Power Sources
,
234
, pp.
234
243
.
38.
Wang
,
C.
,
He
,
H.-W.
,
Zhang
,
Y.-Z.
, and
Mu
,
H.
,
2017
, “
A Comparative Study on the Applicability of Ultracapacitor Models for Electric Vehicles Under Different Temperatures
,”
Appl. Energy
,
196
, pp.
268
278
.
You do not currently have access to this content.