Abstract

To ensure energy storage system operates reliably for electric vehicles, it is vital to accurately identify supercapacitor model parameters in applications. In recent years, most of the algorithms focus on lithium-ion batteries, but few are reported to be used for supercapacitors. To fill this research gap, many algorithms and corresponding fusion methods for supercapacitors are designed in this study. First, seven popular intelligent optimization algorithms are selected to identify the supercapacitor model parameters, and the identification results are discussed in detail. Then, considering a single algorithm cannot guarantee convergence to all global optimal model parameters over state-of-charge (SOC) intervals, five fusion methods for supercapacitor parameter identification have been developed by combining information fusion technology. Finally, voltage errors are statistically analyzed to validate the effectiveness of the five proposed fusion methods. The results show that the five fusion methods can further enhance the global prediction performance of the supercapacitor model, particularly the reverse search-based parameter identification fusion (PIF-RS) method, which has better accuracy and reliability with respect to the maximum (Max) error, mean error, and root mean square (RMS) error decreasing by at least 10.1191%, 17.0024%, and 17.0989%, respectively.

References

1.
Wang
,
C.
,
He
,
H.
,
Zhang
,
Y.
, and
Mu
,
H.
,
2017
, “
A Comparative Study on the Applicability of Ultracapacitor Models for Electric Vehicles Under Different Temperatures
,”
J. Appl. Energy
,
196
, pp.
268
278
.
2.
Xiong
,
R.
,
Sun
,
W.
,
Yu
,
Q.
, and
Sun
,
F.
,
2020
, “
Research Progress, Challenges and Prospects of Fault Diagnosis on Battery System of Electric Vehicles
,”
J. Appl. Energy
,
279
, p.
115855
.
3.
He
,
H.
,
Sun
,
F.
,
Wang
,
Z.
,
Lin
,
C.
,
Zhang
,
C.
,
Xiong
,
R.
,
Deng
,
J.
,
Zhu
,
X.
,
Xie
,
P.
,
Zhang
,
S.
,
Wei
,
Z.
,
Cao
,
W.
, and
Zhai
,
L.
,
2022
, “
China’s Battery Electric Vehicles Lead the World: Achievements in Technology System Architecture and Technological Breakthroughs
,”
J. Green Energy Intell. Transp.
,
1
(
1
), p.
100020
.
4.
Halili
,
Z.
,
2020
, “
Identifying and Ranking Appropriate Strategies for Effective Technology Transfer in the Automotive Industry: Evidence From Iran
,”
J. Technol. Soc.
,
62
, p.
101264
.
5.
Xiong
,
R.
,
Li
,
Z.
,
Yang
,
R.
,
Shen
,
W.
,
Ma
,
S.
, and
Sun
,
F.
,
2022
, “
Fast Self-Heating Battery With Anti-Aging Awareness for Freezing Climates Application
,”
J. Appl. Energy
,
324
, p.
119762
.
6.
Lin
,
C.
,
Mu
,
H.
,
Xiong
,
R.
, and
Shen
,
W.
,
2016
, “
A Novel Multi-Model Probability Battery State of Charge Estimation Approach for Electric Vehicles Using H-Infinity Algorithm
,”
J. Applied Energy
,
166
, pp.
76
83
.
7.
Jamadar
,
N. M.
, and
Jadhav
,
H. T.
,
2022
, “
Effectiveness of Supercapacitor During Braking Operation of Electric Vehicle
,”
J. Mater. Today: Proc.
,
56
, pp.
314
319
.
8.
Lamba
,
P.
,
Singh
,
P.
,
Singh
,
P.
,
Singh
,
P.
,
Bharti
,
Kumar A.
,
Gupta
,
M.
, and
Kumar
,
Y.
,
2021
, “
Recent Advancements in Supercapacitors Based on Different Electrode Materials: Classifications, Synthesis Methods and Comparative Performance
,”
J. Energy Storage
,
48
, p.
103871
.
9.
Li
,
H.
,
Yang
,
H.
,
Xu
,
C.
,
Yan
,
J.
,
Cen
,
K.
,
Ostrikov
,
K.
, and
Bo
,
Z.
,
2022
, “
Entropy Generation Analysis in Supercapacitor Modules Based on a Three-Dimensional Coupled Thermal Model
,”
J. Energy
,
244
, p.
123218
.
10.
Naseri
,
F.
,
Karimi
,
S.
,
Farjah
,
E.
, and
Schaltz
,
E.
,
2022
, “
Supercapacitor Management System: A Comprehensive Review of Modeling, Estimation, Balancing, and Protection Techniques
,”
J. Renew. Sustain. Energy Rev.
,
155
, p.
111913
.
11.
Xu
,
S.-W.
,
Zhang
,
M.-C.
,
Zhang
,
G.-Q.
,
Liu
,
J.-H.
,
Liu
,
X.-Z.
,
Zhang
,
X.
,
Zhao
,
D.-D.
,
Xu
,
C.-L.
, and
Zhao
,
Y.-Q.
,
2019
, “
Temperature-Dependent Performance of Carbon-Based Supercapacitors With Water-in-Salt Electrolyte
,”
J. Power Sources
,
441
, p.
227220
.
12.
Sarr
,
C. T.
,
Camara
,
M. B.
, and
Dakyo
,
B.
,
2021
, “
Supercapacitors Aging Assessment in Wind/Tidal Intermittent Energies Application With Variable Temperature
,”
J. Energy Storage
,
46
, p.
103790
.
13.
Mwambeleko
,
J. J.
, and
Kulworawanichpong
,
T.
,
2021
, “
Supercapacitor and Accelerating Contact Lines Hybrid Tram System
,”
J. Energy Storage
,
44
, p.
103277
.
14.
Zhang
,
R.
,
Chen
,
S.
,
Liu
,
D.
,
Ma
,
S.
, and
Xiao
,
B.
,
2017
, “
Review of the Thevenin Equivalent Parameters Identification Methods
,”
J. Power Syst. Technol.
,
41
(
01
), pp.
146
156
.
15.
Qi
,
Y.
,
Hu
,
W.
,
Dong
,
Y.
,
Fan
,
Y.
,
Dong
,
L.
, and
Xiao
,
M.
,
2020
, “
Optimal Configuration of Concentrating Solar Power in Multienergy Power Systems With an Improved Variational Autoencoder
,”
J. Appl. Energy
,
274
, p.
115124
.
16.
Karimi
,
H.
,
Gharehpetian
,
G. B.
,
Ahmadiahangar
,
R.
, and
Rosin
,
A.
,
2023
, “
Optimal Energy Management of Grid-Connected Multi-Microgrid Systems Considering Demand-Side Flexibility: A Two-Stage Multi-Objective Approach
,”
J. Electr. Power Syst. Res.
,
214
, p.
108902
.
17.
Wang
,
Y.
,
Liu
,
C.
,
Pan
,
R.
, and
Chen
,
Z.
,
2017
, “
Modeling and State-of-Charge Prediction of Lithium-Ion Battery and Ultracapacitor Hybrids With a Co-Estimator
,”
J. Energy
,
121
, pp.
739
750
.
18.
Zhang
,
S.
,
Zhang
,
Q.
,
Liu
,
D.
,
Dai
,
X.
, and
Zhang
,
X.
,
2022
, “
State-of-Charge Estimation for Lithium-Ion Battery During Constant Current Charging Process Based on Model Parameters Updated Periodically
,”
J. Energy
,
257
, p.
124770
.
19.
Shi
,
N.
,
Chen
,
Z.
,
Niu
,
M.
,
He
,
Z.
,
Wang
,
Y.
, and
Cui
,
J.
,
2022
, “
State-of-Charge Estimation for the Lithium-Ion Battery Based on Adaptive Extended Kalman Filter Using Improved Parameter Identification
,”
J. Energy Storage
,
45
, p.
103518
.
20.
Wang
,
C.
,
Fang
,
C.
,
Tang
,
A.
,
Huang
,
B.
, and
Zhang
,
Z.
,
2022
, “
A Novel Ultracapacitor State-of-Charge Fusion Estimation Method for Electric Vehicles Considering Temperature Uncertainty
,”
J. Energies
,
15
(
12
), p.
4309
.
21.
Wang
,
Z.
,
Wang
,
C.
,
Ding
,
L.
,
Wang
,
Z.
, and
Liang
,
S.
,
2021
, “
Parameter Identification of Fractional-Order Time Delay System Based on Legendre Wavelet
,”
J. Mech. Syst. Signal Process.
,
163
, p.
108141
.
22.
Wang
,
S.
,
Fernandez
,
C.
,
Shang
,
L.
,
Li
,
Z.
, and
Li
,
J.
,
2017
, “
Online State of Charge Estimation for the Aerial Lithium-Ion Battery Packs Based on the Improved Extended Kalman Filter Method
,”
J. Energy Storage
,
9
, pp.
69
83
.
23.
Wei
,
Z.
,
Tseng
,
K. J.
,
Wai
,
N.
,
Lim
,
T. M.
, and
Skyllas-Kazacos
,
M.
,
2016
, “
Adaptive Estimation of State of Charge and Capacity With Online Identified Battery Model for Vanadium Redox Flow Battery
,”
J. Power Sources
,
332
, pp.
389
398
.
24.
Dai
,
H.
,
Xu
,
T.
,
Zhu
,
L.
,
Wei
,
X.
, and
Sun
,
Z.
,
2016
, “
Adaptive Model Parameter Identification for Large Capacity Li-Ion Batteries on Separated Time Scales
,”
J. Appl. Energy
,
184
, pp.
119
131
.
25.
Shi
,
J.
,
Guo
,
H.
, and
Chen
,
D.
,
2021
, “
Parameter Identification Method for Lithium-Ion Batteries Based on Recursive Least Square With Sliding Window Difference Forgetting Factor
,”
J. Energy Storage
,
44
, p.
103485
.
26.
Wang
,
C.
,
Liu
,
R.
, and
Tang
,
A.
,
2022
, “
Energy Management Strategy of Hybrid Energy Storage System for Electric Vehicles Based on Genetic Algorithm Optimization and Temperature Effect
,”
J. Energy Storage
,
51
, p.
104314
.
27.
Saadaoui
,
D.
,
Elyaqouti
,
M.
,
Assalaou
,
K.
,
Hmamou
,
D. B.
, and
Lidaighbi
,
S.
,
2021
, “
Parameters Optimization of Solar PV Cell/Module Using Genetic Algorithm Based on Non-Uniform Mutation
,”
J. Energy Convers. Manage.: X
,
12
, p.
100129
.
28.
Chen
,
H.
,
Liu
,
Z.
,
Wu
,
B.
, and
He
,
C.
,
2021
, “
A Technique Based on Nonlinear Hanning-Windowed Chirplet Model and Genetic Algorithm for Parameter Estimation of Lamb Wave Signals
,”
J. Ultrasonics
,
111
, p.
106333
.
29.
Pan
,
T.-C.
,
Liu
,
E.-J.
,
Ku
,
H.-C.
, and
Hong
,
C.-W.
,
2022
, “
Parameter Identification and Sensitivity Analysis of Lithium-Ion Battery via Whale Optimization Algorithm
,”
J. Electrochim. Acta
,
404
, p.
139574
.
30.
Rahman
,
M. A.
,
Anwar
,
S.
, and
Izadian
,
A.
,
2016
, “
Electrochemical Model Parameter Identification of a Lithium-Ion Battery Using Particle Swarm Optimization Method
,”
J. Power Sources
,
307
, pp.
86
97
.
31.
Lai
,
X.
,
Gao
,
W.
,
Zheng
,
Y.
,
Ouyang
,
M.
,
Li
,
J.
,
Han
,
X.
, and
Zhou
,
L.
,
2019
, “
A Comparative Study of Global Optimization Methods for Parameter Identification of Different Equivalent Circuit Models for Li-Ion Batteries
,”
J. Electrochim. Acta
,
295
, pp.
1057
1066
.
32.
El-Sehiemy
,
R. A.
,
Hamida
,
M. A.
, and
Mesbahi
,
T.
,
2020
, “
Parameter Identification and State-of-Charge Estimation for Lithium-Polymer Battery Cells Using Enhanced Sunflower Optimization Algorithm
,”
J. Int. J. Hydrogen Energy
,
45
(
15
), pp.
8833
8842
.
33.
Lin
,
C.
,
Mu
,
H.
,
Xiong
,
R.
, and
Cao
,
J.
,
2017
, “
Multi-Model Probabilities Based State Fusion Estimation Method of Lithium-Ion Battery for Electric Vehicles: State-of-Energy
,”
J. Appl. Energy
,
194
, pp.
560
568
.
34.
Xiong
,
R.
,
Wang
,
J.
,
Shen
,
W.
,
Tian
,
J.
, and
Mu
,
H.
,
2021
, “
Co-Estimation of State of Charge and Capacity for Lithium-Ion Batteries With Multi-Stage Model Fusion Method
,”
J. Engineering
,
7
, pp.
1469
1482
.
35.
Wang
,
R.
,
Pei
,
X.
,
Zhu
,
J.
,
Zhang
,
Z.
,
Huang
,
X.
,
Zhai
,
J.
, and
Zhang
,
F.
,
2022
, “
Multivariable Time Series Forecasting Using Model Fusion
,”
J. Inform. Sci.
,
585
, pp.
262
274
.
36.
Kim
,
J.
,
Chun
,
H.
,
Baek
,
J.
, and
Han
,
S.
,
2022
, “
Parameter Identification of Lithium-Ion Battery Pseudo-2-Dimensional Models Using Genetic Algorithm and Neural Network Cooperative Optimization
,”
J. Energy Storage
,
45
, p.
103571
.
37.
Xia
,
L.
,
Wang
,
S.
,
Yu
,
C.
,
Fan
,
Y.
,
Li
,
B.
, and
Xie
,
Y.
,
2022
, “
Joint Estimation of the State-of-Energy and State-of-Charge of Lithium-Ion Batteries Under a Wide Temperature Range Based on the Fusion Modeling and Online Parameter Prediction
,”
J. Energy Storage
,
52
, p.
105010
.
38.
Huang
,
B.
,
Ma
,
Y.
,
Wang
,
C.
,
Chen
,
Y.
, and
Yu
,
Q.
,
2021
, “
A Multi-Model Probability Based Two-Layer Fusion Modeling Approach of Supercapacitor for Electric Vehicles
,”
J. Energies
,
14
(
15
), p.
4644
.
39.
Chen
,
C.
,
Xiong
,
R.
,
Yang
,
R.
, and
Li
,
H.
,
2022
, “
A Novel Data-Driven Method for Mining Battery Open-Circuit Voltage Characterization
,”
J. Green Energy Intell. Transp.
,
1
(
1
), p.
100001
.
40.
Mirjalili
,
S.
,
Gandomi
,
A. H.
,
Mirjalili
,
S. Z.
,
Saremi
,
S.
,
Faris
,
H.
, and
Mirjalili
,
S. M.
,
2017
, “
Salp Swarm Algorithm: A Bio-Inspired Optimizer for Engineering Design Problems
,”
J. Adv. Eng. Software
,
114
, pp.
163
191
.
41.
Paggi
,
H.
,
Soriano
,
J.
,
Rampérez
,
V.
,
Gutiérrez
,
R.
, and
Lara
,
J. A.
,
2022
, “
A Distributed Soft Sensors Model for Managing Vague and Uncertain Multimedia Communications Using Information Fusion Techniques
,”
J. Alexandria Eng. J.
,
61
(
7
), pp.
5517
5528
.
You do not currently have access to this content.