Abstract

Adding flame-retardant additives to electrolytes can significantly enhance the safety of lithium-ion batteries. To clarify the effects of flame-retardant additive dimethyl methylphosphonate (DMMP) on electrolyte flammability under practical battery fire conditions, experimental studies are conducted on an electrolyte pool fire setup. It is observed that the flame of carbonate solvent is blue, while the flames of electrolyte and electrolyte with DMMP addition are yellow, due to the formation of phosphorus-containing particles in the flame. With 30 wt% DMMP addition, the combustion duration, combustion mass ratio, and flame height decrease significantly by 40%. The electrolyte achieves non-flammability when the additive fraction increases to 40%. It is observed that with DMMP addition the charred layer forms on the surface of electrolyte liquid, and slows down the heat and mass transfer between the gas and electrolyte liquid. This is the flame-retardant mechanism of DMMP in the condensed phase. The flame spectrum results show that with LiPF6 and DMMP addition the OH emission intensities are weakened dramatically. This is because LiPF6 and DMMP decompose to the radicals containing phosphorus, which can scavenge the vital radicals (H and OH), and then suppress the combustion chain branching reactions. This is the flame-retardant mechanism of LiPF6 and DMMP in the gas phase.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Etacheri
,
V.
,
Marom
,
R.
,
Elazari
,
R.
,
Salitra
,
G.
, and
Aurbach
,
D.
,
2011
, “
Challenges in the Development of Advanced Li-Ion Batteries: A Review
,”
Energy Environ. Sci.
,
4
(
9
), pp.
3243
3262
.
2.
Tarascon
,
J. M.
, and
Armand
,
M.
,
2001
, “
Issues and Challenges Facing Rechargeable Lithium Batteries
,”
Nature
,
414
(
6861
), pp.
359
367
.
3.
Scrosati
,
B.
, and
Garche
,
J.
,
2010
, “
Lithium Batteries: Status, Prospects and Future
,”
J. Power Sources
,
195
(
9
), pp.
2419
2430
.
4.
Menale
,
C.
,
D'Annibale
,
F.
,
Mazzarotta
,
B.
, and
Bubbico
,
R.
,
2019
, “
Thermal Management of Lithium-Ion Batteries: An Experimental Investigation
,”
Energy
,
182
, pp.
57
71
.
5.
Ding
,
Y.
,
Zheng
,
Y.
,
Li
,
S.
,
Dong
,
T.
,
Gao
,
Z.
,
Zhang
,
T.
,
Li
,
W.
, et al
,
2023
, “
A Review of Battery Thermal Management Methods for Electric Vehicles
,”
J. Electrochem. Energy
,
20
(
2
), p.
021002
.
6.
Lyu
,
P.
,
Liu
,
X.
,
Qu
,
J.
,
Zhao
,
J.
,
Huo
,
Y.
,
Qu
,
Z.
, and
Rao
,
Z.
,
2020
, “
Recent Advances of Thermal Safety of Lithium Ion Battery for Energy Storage
,”
Energy Storage Mater.
,
31
, pp.
195
220
.
7.
Wang
,
Q.
,
Mao
,
B.
,
Stoliarov
,
S. I.
, and
Sun
,
J.
,
2019
, “
A Review of Lithium Ion Battery Failure Mechanisms and Fire Prevention Strategies
,”
Prog. Energy Combust. Sci.
,
73
, pp.
95
131
.
8.
Wang
,
Q.
,
Ping
,
P.
,
Zhao
,
X.
,
Chu
,
G.
,
Sun
,
J.
, and
Chen
,
C.
,
2012
, “
Thermal Runaway Caused Fire and Explosion of Lithium Ion Battery
,”
J. Power Sources
,
208
, pp.
210
224
.
9.
Li
,
C.
,
Wang
,
H.
,
Han
,
X.
,
Wang
,
Y.
,
Wang
,
Y.
,
Zhang
,
Y.
,
Feng
,
X.
, and
Ouyang
,
M.
,
2021
, “
An Experimental Study on Thermal Runaway Behavior for High-Capacity Li(Ni0.8co0.1mn0.1)O2 Pouch Cells at Different State of Charges
,”
J. Electrochem. Energy
,
18
(
2
), p.
021012
.
10.
Sun
,
J.
,
Mao
,
B.
, and
Wang
,
Q.
,
2021
, “
Progress on the Research of Fire Behavior and Fire Protection of Lithium Ion Battery
,”
Fire Safety J.
,
120
, p.
103119
.
11.
Chawla
,
N.
,
Bharti
,
N.
, and
Singh
,
S.
,
2019
, “
Recent Advances in Non-Flammable Electrolytes for Safer Lithium-Ion Batteries
,”
Batteries
,
5
(
1
), p.
19
.
12.
Huang
,
P.
,
Yao
,
C.
,
Mao
,
B.
,
Wang
,
Q.
,
Sun
,
J.
, and
Bai
,
Z.
,
2020
, “
The Critical Characteristics and Transition Process of Lithium-Ion Battery Thermal Runaway
,”
Energy
,
213
, p.
021012
.
13.
Bresser
,
D.
,
Hosoi
,
K.
,
Howell
,
D.
,
Li
,
H.
,
Zeisel
,
H.
,
Amine
,
K.
, and
Passerini
,
S.
,
2018
, “
Perspectives of Automotive Battery R&D in China, Germany, Japan, and the USA
,”
J. Power Sources
,
382
, pp.
176
178
.
14.
Chen
,
J.
,
Manivanan
,
M.
,
Duque
,
J.
,
Kollmeyer
,
P.
,
Panchal
,
S.
,
Gross
,
O.
, and
Emadi
,
A.
,
2023
, “
A Convolutional Neural Network for Estimation of Lithium-Ion Battery State-of-Health During Constant Current Operation
,”
2023 IEEE Transportation Electrification Conference & Expo (ITEC)
,
Detroit, MI
,
June 21–23
, pp.
1
6
.
15.
Talele
,
V.
,
Uğur Moralı
,
M. S. P.
,
Panchal
,
S.
,
Fraser
,
R.
,
Fowler
,
M.
, and
Thorat
,
P.
,
2024
, “
Battery Thermal Runaway Preventive Time Delay Strategy Using Different Melting Point Phase Change Materials
,”
SAE Int. J. Elect. Veh.
,
13
(
3
), p.
22
.
16.
Xie
,
Y.
,
Fan
,
Y.
,
Yang
,
R.
,
Zhang
,
K.
,
Chen
,
B.
,
Panchal
,
S.
, and
Zhang
,
Y.
,
2024
, “
Influence of Uncertainty of Thermal Conductivity on Prediction Accuracy of Thermal Model of Lithium-Ion Battery
,”
IEEE Trans. Transp. Electr.
, pp.
1
1
.
17.
Vashisht
,
S.
,
Rakshit
,
D.
,
Panchal
,
S.
,
Fowler
,
M.
, and
Fraser
,
R.
,
2023
, “
Quantifying the Effects of Temperature and Depth of Discharge on Li-Ion Battery Heat Generation: An Assessment of Resistance Models for Accurate Thermal Behavior Prediction
,”
J. Electrochem. Soc
,
2
(
3
), p.
445
.
18.
Kvasha
,
A.
,
Gutiérrez
,
C.
,
Osa
,
U.
,
de Meatza
,
I.
,
Blazquez
,
J. A.
,
Macicior
,
H.
, and
Urdampilleta
,
I.
,
2018
, “
A Comparative Study of Thermal Runaway of Commercial Lithium Ion Cells
,”
Energy
,
159
, pp.
547
557
.
19.
Tran
,
M.-K.
,
DaCosta
,
A.
,
Mevawalla
,
A.
,
Panchal
,
S.
, and
Fowler
,
M.
,
2021
, “
Comparative Study of Equivalent Circuit Models Performance in Four Common Lithium-Ion Batteries: LFP, NMC, LMO, NCA
,”
Batteries
,
7
(
3
), p.
51
.
20.
Wang
,
Q.
,
Jiang
,
L.
,
Yu
,
Y.
, and
Sun
,
J.
,
2019
, “
Progress of Enhancing the Safety of Lithium Ion Battery From the Electrolyte Aspect
,”
Nano Energy
,
55
, pp.
93
114
.
21.
Lamb
,
J.
,
Orendorff
,
C. J.
,
Steele
,
L. A. M.
, and
Spangler
,
S. W.
,
2015
, “
Failure Propagation in Multi-cell Lithium Ion Batteries
,”
J. Power Sources
,
283
, pp.
517
523
.
22.
Ribière
,
P.
,
Grugeon
,
S.
,
Morcrette
,
M.
,
Boyanov
,
S.
,
Laruelle
,
S.
, and
Marlair
,
G.
,
2012
, “
Investigation on the Fire-Induced Hazards of Li-Ion Battery Cells by Fire Calorimetry
,”
Energy Environ. Sci.
,
5
(
1
), pp.
5271
5280
.
23.
Xu
,
K.
,
Ding
,
M. S.
,
Zhang
,
S.
,
Allen
,
J. L.
, and
Jow
,
T. R.
,
2002
, “
An Attempt to Formulate Nonflammable Lithium Ion Electrolytes With Alkyl Phosphates and Phosphazenes
,”
J. Electrochem. Soc.
,
149
(
5
), pp.
622
626
.
24.
Kuo
,
P.-L.
,
Tsao
,
C.-H.
,
Hsu
,
C.-H.
,
Chen
,
S.-T.
, and
Hsu
,
H.-M.
,
2016
, “
A New Strategy for Preparing Oligomeric Ionic Liquid Gel Polymer Electrolytes for High-Performance and Nonflammable Lithium Ion Batteries
,”
J. Membrane Sci.
,
499
, pp.
462
469
.
25.
Xiang
,
H. F.
,
Xu
,
H. Y.
,
Wang
,
Z. Z.
, and
Chen
,
C. H.
,
2007
, “
Dimethyl Methylphosphonate (DMMP) as an Efficient Flame Retardant Additive for the Lithium-Ion Battery Electrolytes
,”
J. Power Sources
,
173
(
1
), pp.
562
564
.
26.
Hyung
,
Y. E.
,
Vissers
,
D. R.
, and
Amine
,
K.
,
2003
, “
Flame-Retardant Additives for Lithium-Ion Batteries
,”
J. Power Sources
,
119–121
, pp.
383
387
.
27.
Fu
,
Y.
,
Lu
,
S.
,
Shi
,
L.
,
Cheng
,
X.
, and
Zhang
,
H.
,
2018
, “
Ignition and Combustion Characteristics of Lithium Ion Batteries Under Low Atmospheric Pressure
,”
Energy
,
161
, pp.
38
45
.
28.
Nagasubramanian
,
G.
, and
Fenton
,
K.
,
2013
, “
Reducing Li-Ion Safety Hazards Through Use of Non-Flammable Solvents and Recent Work at Sandia National Laboratories
,”
Electrochim. Acta
,
101
, pp.
3
10
.
29.
Zou
,
K.
,
Chen
,
X.
,
Ding
,
Z.
,
Gu
,
J.
, and
Lu
,
S.
,
2020
, “
Jet Behavior of Prismatic Lithium-Ion Batteries During Thermal Runaway
,”
Appl. Therm. Eng.
,
179
, p.
115745
.
30.
Fu
,
Y.
,
Lu
,
S.
,
Shi
,
L.
,
Cheng
,
X.
, and
Zhang
,
H.
,
2016
, “
Combustion Characteristics of Electrolyte Pool Fires for Lithium Ion Batteries
,”
J. Electrochem. Soc
,
163
(
9
), pp.
2022
2028
.
31.
Guerfi
,
A.
,
Dontigny
,
M.
,
Charest
,
P.
,
Petitclerc
,
M.
,
Lagacé
,
M.
,
Vijh
,
A.
, and
Zaghib
,
K.
,
2010
, “
Improved Electrolytes for Li-Ion Batteries: Mixtures of Ionic Liquid and Organic Electrolyte With Enhanced Safety and Electrochemical Performance
,”
J. Power Sources
,
195
(
3
), pp.
845
852
.
32.
Huang
,
Q.
,
Weng
,
J.
,
Ouyang
,
D.
,
Chen
,
M.
,
Wang
,
X.
, and
Wang
,
J.
,
2023
, “
Comparative Studies on the Combustion Characteristics of Electrolytes and Carbonate Mixed Solvents With Flame Retardant Additives Under Low Pressures
,”
Case Stud. Therm. Eng.
,
43
, p.
102810
.
33.
Mei
,
J.
,
Liu
,
H.
, and
Chen
,
M.
,
2019
, “
Experimental Study on Combustion Behavior of Mixed Carbonate Solvents and Separator Used in Lithium-Ion Batteries
,”
J. Therm. Anal. Calorim.
,
139
(
2
), pp.
1255
1264
.
34.
Chen
,
M.
,
Mei
,
J.
, and
Liu
,
H.
,
2019
, “
Comparative Experimental Study on Combustion Characteristics of Typical Combustible Components for Lithium-Ion Battery
,”
Int. J. Energy Res.
,
44
(
1
), pp.
218
228
.
35.
Guo
,
F.
,
Hase
,
W.
,
Ozaki
,
Y.
,
Konno
,
Y.
,
Inatsuki
,
M.
,
Nishimura
,
K.
,
Hashimoto
,
N.
, and
Fujita
,
O.
,
2019
, “
Experimental Study on Flammability Limits of Electrolyte Solvents in Lithium-Ion Batteries Using a Wick Combustion Method
,”
Exp. Therm. Fluid Sci.
,
109
, p.
109858
.
36.
Guo
,
F.
,
Ozaki
,
Y.
,
Nishimura
,
K.
,
Hashimoto
,
N.
, and
Fujita
,
O.
,
2019
, “
Experimental Study on Flame Stability Limits of Lithium Ion Battery Electrolyte Solvents With Organophosphorus Compounds Addition Using a Candle-Like Wick Combustion System
,”
Combust. Flame
,
207
, pp.
63
70
.
37.
Guo
,
F.
,
Ozaki
,
Y.
,
Nishimura
,
K.
,
Hashimoto
,
N.
, and
Fujita
,
O.
,
2020
, “
Influence of Lithium Salts on the Combustion Characteristics of Dimethyl Carbonate-Based Electrolytes Using a Wick Combustion Method
,”
Combust. Flame
,
213
, pp.
314
321
.
38.
Bouvet
,
N.
,
Linteris
,
G. T.
,
Babushok
,
V. I.
,
Takahashi
,
F.
,
Katta
,
V. R.
, and
Krämer
,
R.
,
2016
, “
A Comparison of the Gas-Phase Fire Retardant Action of Dmmp and Br2 in Co-Flow Diffusion Flame Extinguishment
,”
Combust. Flame
,
169
, pp.
340
348
.
39.
Hou
,
J.
,
Lu
,
L.
,
Wang
,
L.
,
Ohma
,
A.
,
Ren
,
D.
,
Feng
,
X.
,
Li
,
Y.
, et al
,
2020
, “
Thermal Runaway of Lithium-Ion Batteries Employing LiN(SO2F)2-Based Concentrated Electrolytes
,”
Nat. Commun.
,
11
(
1
), p.
5100
.
40.
Deng
,
K.
,
Zeng
,
Q.
,
Wang
,
D.
,
Liu
,
Z.
,
Wang
,
G.
,
Qiu
,
Z.
,
Zhang
,
Y.
,
Xiao
,
M.
, and
Meng
,
Y.
,
2020
, “
Nonflammable Organic Electrolytes for High-Safety Lithium-Ion Batteries
,”
Energy Storage Mater.
,
32
, pp.
425
447
.
41.
Wang
,
Q.
,
Ping
,
P.
,
Sun
,
J.
, and
Chen
,
C.
,
2010
, “
Improved Thermal Stability of Lithium Ion Battery by Using Cresyl Diphenyl Phosphate as an Electrolyte Additive
,”
J. Power Sources
,
195
(
21
), pp.
7457
7461
.
42.
Wang
,
Q.
,
Sun
,
J.
,
Yao
,
X.
, and
Chen
,
C.
,
2005
, “
4-Isopropyl Phenyl Diphenyl Phosphate as Flame Retardant Additive for Lithium-Ion Battery Electrolyte
,”
Electrochem. Solid State
,
8
, pp.
464
470
.
43.
Gao
,
Z.
,
Rao
,
S.
,
Zhang
,
T.
,
Li
,
W.
,
Yang
,
X.
,
Chen
,
Y.
,
Zheng
,
Y.
,
Ding
,
Y.
,
Dong
,
T.
, and
Li
,
S.
,
2022
, “
Design Strategies of Flame-Retardant Additives for Lithium Ion Electrolyte
,”
J. Electrochem. Energy
,
19
(
3
), p.
030910
.
You do not currently have access to this content.