Abstract

The O–H/C–H scission of methanol on Pt clusters is a crucial step in direct methanol fuel cells applications. The first dehydrogenation process of methanol on Ptnq clusters (n = 5, 13, 19; q = 0, +1, −1) in various charge states is studied. Our findings indicate that methanol adsorbs more easily on cationic Ptn+ than on neutral Ptn or anionic Ptn. However, the adsorption capacity of methanol on Ptnq gradually decreases with increasing cluster size, especially for CH3OH on Ptn+, which decreases significantly (from −57.61 kcal/mol to −16.41 kcal/mol). Compared with Ptn and Ptn+, the energy barrier of O–H/C–H bond cleavage is significantly reduced by injecting an electron into Ptn to form Ptn, and the activity of the catalyst is improved. However, the energy barrier of O–H/C–H cleavage increases gradually with cluster size, leading to a decrease in catalytic activity. The effect of charge weakens as cluster size increases, and small clusters with injected electrons exhibit better catalytic activity.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Wu
,
A. H.
,
Hao
,
Z.
,
He
,
G. G.
, and
Cai
,
D. H.
,
2023
, “
Optimization of Hydrogen Ejector Structure in Proton Exchange Membrane Fuel Cell System Under Wide Operating Conditions
,”
Energy Sources, Part A
,
46
(
1
), pp.
522
542
.
2.
Kutagulla
,
S.
,
Le
,
N. H.
,
Caldino Bohn
,
I. T.
,
Stacy
,
B. J.
,
Favela
,
C. S.
,
Slack
,
J. J.
,
Baker
,
A. M.
, et al
,
2023
, “
Comparative Studies of Atomically Thin Proton Conductive Films to Reduce Crossover in Hydrogen Fuel Cells
,”
ACS Appl. Mater. Interfaces
,
15
(
51
), pp.
59358
59369
.
3.
Alias
,
M. S.
,
Kamarudin
,
S. K.
,
Zainoodin
,
A. M.
, and
Masdar
,
M. S.
,
2020
, “
Active Direct Methanol Fuel Cell: An Overview
,”
Int. J. Hydrogen Energy
,
45
(
38
), pp.
19620
19641
.
4.
Chen
,
F.
,
Sun
,
Y. X.
,
Li
,
H. Y.
, and
Li
,
C. J.
,
2022
, “Review and Development of Anode Electrocatalyst Carriers for Direct Methanol Fuel Cell,”
Energy Technol.
,
10
(
6
), p.
2101086
.
5.
Niu
,
C. Y.
,
Jiao
,
J.
,
Xing
,
B.
,
Wang
,
G. C.
, and
Bu
,
X. H.
,
2010
, “
Reaction Mechanism of Methanol Decomposition on Pt-Based Model Catalysts: A Theoretical Study
,”
J. Comput. Chem.
,
31
(
10
), pp.
2023
2037
.
6.
Zaragoza
,
I. P.
,
Salcedo
,
R.
, and
Vergara
,
J.
,
2009
, “
DFT: A Dynamic Study of the Interaction of Ethanol and Methanol With Platinum
,”
J. Mol. Model.
,
15
(
5
), pp.
447
451
.
7.
Zhong
,
W. H.
,
Liu
,
Y. X.
, and
Zhang
,
D. J.
,
2012
, “
A Comparative Theoretical Study for the Methanol Dehydrogenation to CO Over Pt3 and PtAu2 Clusters
,”
J. Mol. Model
,
18
(
7
), pp.
3051
3060
.
8.
Lin
,
L.
,
Zhu
,
Q.
, and
Xu
,
A. W.
,
2015
, “Anode Catalysts and Cathode Catalysts of Direct Methanol Fuel Cells,”
Prog. Chem.
,
27
(
9
), pp.
1147
1157
.
9.
Choi
,
J. G.
,
Ham
,
K.
,
Bong
,
S.
, and
Lee
,
J.
,
2022
, “
Phosphate-Decorated Pt Nanoparticles as Methanol-Tolerant Oxygen Reduction Electrocatalyst for Direct Methanol Fuel Cells
,”
J. Electrochem. Sci. Technol.
,
13
(
3
), pp.
354
361
.
10.
Vu
,
T. H. T.
,
Nguyen
,
T. T.
,
Nguyen
,
T. H.
,
Nguyen
,
M. D.
, and
Nguyen
,
Q. M.
,
2022
, “
A New Method for Synthesizing High Performance Few-Layer Graphene Supported Pt Electrocatalysts in Methanol and Ethanol Oxidation
,”
Electrochim. Acta
,
380
, p.
138258
.
11.
Giordano
,
E.
,
Berretti
,
E.
,
Capozzoli
,
L.
,
Lavacchi
,
A.
,
Muhyuddin
,
M.
,
Santoro
,
C.
,
Gatto
,
I.
,
Zaffora
,
A.
, and
Santamaria
,
M.
,
2023
, “
Boosting DMFC Power Output by Adding Sulfuric Acid asa Supporting Electrolyte: Effect on Cell Performance Equipped with Platinum and Platinum Group Metal-Free Cathodes
,”
J. Power Sources
,
563
, p.
232806
.
12.
Xu
,
G. D.
,
Ye
,
Z. H.
,
Zou
,
K. Q.
,
Li
,
C. F.
,
Zhou
,
D. J.
,
Lv
,
R. G.
,
Huang
,
B.
,
Li
,
J.
, and
Cai
,
W. W.
,
2023
, “
Defect Configuration of Ceria for Pt Anchoring Toward Efficient Methanol Oxidation
,”
Int. J. Hydrogen Energy
,
48
(
25
), pp.
9344
9352
.
13.
Lenne
,
Q.
,
Mattiuzzi
,
A.
,
Jabin
,
I.
,
Troian-Gautier
,
L.
,
Hamon
,
J.
,
Leroux
,
Y. R.
, and
Lagrost
,
C.
,
2023
, “Chemical Surface Grafting of Pt Nanocatalysts for Reconciling Methanol Tolerance With Methanol Oxidation Activity,”
ChemSusChem
,
16
(
8
), p.
e202201990
.
14.
Karp
,
E. M. T.
,
Silbaugh
,
L.
,
Crowe
,
M. C.
, and
Campbell
,
C. T.
,
2012
, “
Energetics of Adsorbed Methanol and Methoxy on Pt(111) by Microcalorimetry
,”
J. Am. Chem. Soc.
,
134
(
50
), pp.
20388
20395
.
15.
Greeley
,
J.
, and
Mavrikakis
,
M.
,
2002
, “
A First-Principles Study of Methanol Decomposition on Pt(111)
,”
J. Am. Chem. Soc.
,
124
(
24
), pp.
7193
7201
.
16.
Greeley
,
J.
, and
Mavrikakis
,
M.
,
2004
, “
Competitive Paths for Methanol Decomposition on Pt(111)
,”
J. Am. Chem. Soc.
,
126
(
12
), pp.
3910
3919
.
17.
Ou
,
L.
,
2022
, “
Theoretical Insights Into Effect of Surface Composition of Pt-Ru Bimetallic Catalysts on CH3OH Oxidation: Mechanistic Considerations
,”
J. Mol. Model
,
13
(
6
), p.
149
.
18.
Chen
,
Y. W.
, and
Ho
,
J. J.
,
2009
, “
Dehydrogenation of Ethanol on a 2Ru/ZrO2(111) Surface: Density Functional Computations
,”
J. Phys. Chem. C
,
113
(
15
), pp.
6132
6139
.
19.
Lin
,
Y. C.
,
Chou
,
H. L.
,
Tsai
,
M. C.
,
Hwang
,
B. J.
,
Sarma
,
L. S.
,
Lee
,
Y. C.
,
Chen
,
C. I.
,
2009
, “
Combined Experimental and Theoretical Investigation of Nanosized Effects of Pt Catalyst on Their Underlying Methanol Electro-Oxidation Activity
,”
J. Phys. Chem. C
,
1133
(
21
), pp.
9197
9205
.
20.
Ferrin
,
P.
, and
Mavrikakis
,
M.
,
2009
, “
Structure Sensitivity of Methanol Electrooxidation on Transition Metals
,”
J. Am. Chem. Soc.
,
131
(
40
), pp.
14381
14389
.
21.
Xie
,
T.
,
Hare
,
B. J.
,
Meza-Morales
,
P. J.
,
Sievers
,
C.
, and
Getman
,
R. B.
,
2020
, “
Identification of the Active Sites in the Dehydrogenation of Methanol on Pt/Al2O3Catalysts
,”
J. Phys. Chem. C
,
124
(
35
), pp.
19015
19023
.
22.
Ou
,
L.
,
2018
, “
Theoretical Insights Into the Effect of Solvation and Sublayer Ru on Pt-Catalytic CH3OH Oxidation Mechanisms in the Aqueous Phase
,”
J. Phys. Chem. C
,
122
(
26
), pp.
14554
14565
.
23.
Ou
,
L.
,
2018
, “
New Insights Into the Pt-Catalyzed CH3OH Oxidation Mechanism: First-Principle Considerations on Thermodynamics, Kinetics, and Reversible Potentials
,”
ACS Omega
,
3
(
1
), pp.
886
897
.
24.
Hartnig
,
C.
, and
Spohr
,
E.
,
2005
, “
The Role of Water in the Initial Steps of Methanol Oxidation on Pt(111)
,”
Chem. Phys.
,
319
(
1–3
), pp.
185
191
.
25.
Pang
,
S. K.
,
2015
, “Why Palladium Cathodes Can Bear Resistance to Methanol But Not Platinum Cathodes,”
Electrochim. Acta
,
161
, pp.
420
426
.
26.
Davis
,
J. L.
, and
Barteau
,
M. A.
,
1987
, “
Decarbonylation and Decomposition Pathways of Alcohol's on Pd(111)
,”
Surf. Sci.
,
187
(
2–3
), pp.
387
406
.
27.
Watanabe
,
T.
,
Ehara
,
M.
,
Kuramoto
,
K.
, and
Nakatsuji
,
H.
,
2009
, “
Possible Reaction Pathway in Methanol Dehydrogenation on Pt and Ag Surfaces/Clusters Starting From O–H Scission: Dipped Adcluster Model Study
,”
Surf. Sci.
,
603
(
4
), pp.
641
646
.
28.
Yuan
,
J.
,
Wang
,
Z.
,
Zhang
,
Y.
,
Shen
,
Y. F.
,
Han
,
D.
,
Zhang
,
Q.
,
Xu
,
X.
, and
Niu
,
L.
,
2008
, “
Electrostatic Layer-by-Layer a of Platinum-Loaded Multiwall Carbon Nanotube Multilayer: A Tunable Catalyst Film for Anodic Methanol Oxidation
,”
Thin Solid Films
,
516
(
18
), pp.
6531
6535
.
29.
Wang
,
J.
,
Xi
,
J.
,
Bai
,
Y.
,
Shen
,
Y.
,
Sun
,
J.
,
Chen
,
L.
,
Zhu
,
W.
, and
Qiu
,
X.
,
2007
, “
Structural Designing of Pt-CeO2/CNTs for Methanol Electro-Oxidation
,”
J. Power Sources
,
164
(
2
), pp.
555
560
.
30.
Cui
,
G.
,
Shen
,
P. K.
,
Meng
,
H.
,
Zhao
,
J.
, and
Wu
,
G.
,
2011
, “
Tungsten Carbide as Supports for Pt Electrocatalysts With Improved CO Tolerance in Methanol Oxidation
,”
J. Power Sources
,
196
(
15
), pp.
6125
6130
.
31.
Zainoodin
,
A. M.
,
Kamarudin
,
S. K.
, and
Daud
,
W. R. W.
,
2010
, “
Electrode in Direct Methanol Fuel Cells
,”
Int. J. Hydrogen Energy
,
35
(
10
), pp.
4606
4621
.
32.
Wang
,
Q.
, and
Ding
,
Y.
,
2017
, “
Charge Influence on the First Dehydrogenation of Methanol by Ptn q (n = 1–3, q = 0, +1, −1): A Computational Study
,”
J. Mol. Model.
,
23
(
2
), p.
61
.
33.
Wang
,
Q.
, and
Ding
,
Y.
,
2017
, “
Methanol Oxidation on Platinum Catalyst: Why Does the Negatively Charged Surface Perform Better Than the Neutral One?
,”
ChemistrySelect
,
2
(
1
), pp.
469
473
.
34.
Frisch
,
M. J.
,
Trucks
,
G. W.
,
Schlegel
,
H. B.
,
Scuseria
,
G. E.
,
Robb
,
M. A.
,
Cheeseman
,
J. R.
,
Montgomery
,
J. A.
, et al
,
2009
,
Gaussian 09, Revision D. 01
,
Gaussian, Inc.
,
Wallingford, UK
.
35.
Dunning
,
T. H.
, Jr.
, and
Hay
,
P. J.
,
1977
, “Gaussian Basis Sets for Molecular Calculations,”
Methods of Electronic Structure Theory: Vol. 3 (Modern Theoretical Chemistry
),
H. F.
Schaefer
, ed., pp.
1
27
.
36.
Andrae
,
D.
,
Haeussermann
,
U.
,
Dolg
,
M.
,
Stoll
,
H.
, and
Preuss
,
H.
,
1990
, “
Energy-Adjusted Ab Initio Pseudopotentials for the Second and Third row Transition Elements
,”
Theor. Chim. Acta
,
77
(
2
), pp.
123
141
.
37.
Hohenberg
,
P.
, and
Kohn
,
W.
,
1964
, “
Inhomogeneous Electron Gas
,”
Phys. Rev.
,
136
(
3B
), pp.
B864
B871
.
38.
Kohn
,
W.
, and
Sham
,
L. J.
,
1965
, “
Self-Consistent Equations Including Exchange and Correlation Effects
,”
Phys. Rev.
,
140
(
4A
), pp.
A1133
A1138
.
You do not currently have access to this content.