Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Electrocatalytically active titanium oxynitride (TiNO) thin films were fabricated on commercially available titanium metal plates using a pulsed laser deposition method for energy storage applications. The elemental composition and nature of bonding were analyzed using X-ray photoelectron spectroscopy (XPS) to reveal the reacting species and active sites responsible for the enhanced electrochemical performance of the TiNO electrodes. Symmetric supercapacitor devices were fabricated using two TiNO working electrodes separated by an ion-transporting layer to analyze their real-time performance. The galvanostatic charge–discharge studies on the symmetric cell have indicated that TiNO films deposited on the polycrystalline titanium plates at lower temperatures are superior to TiNO films deposited at higher temperatures in terms of storage characteristics. For example, TiNO films deposited at 300 °C exhibited the highest specific capacity of 69 mF/cm2 at 0.125 mA/cm2 with an energy density of 7.5 Wh/cm2. The performance of this supercapacitor (300 °C TiNO) device is also found to be ∼22% better compared to that of a 500 °C TiNO supercapacitor with a capacitance retention ability of 90% after 1000 cycles. The difference in the electrochemical storage and capacitance properties is attributed to the reduced leaching away of oxygen from the TiNO films by the Ti plate at lower deposition temperatures, leading to higher oxygen content in the TiNO films and, consequently, a high redox activity at the electrode/electrolyte interface.

References

1.
Fera
,
M.
,
Macchiaroli
,
R.
,
Iannone
,
R.
,
Miranda
,
S.
, and
Riemma
,
S.
,
2016
, “
Economic Evaluation Model for the Energy Demand Response
,”
Energy
,
112
, pp.
457
468
.
2.
Xie
,
Q.
,
Bao
,
R.
,
Zheng
,
A.
,
Zhang
,
Y.
,
Wu
,
S.
,
Xie
,
C.
, and
Zhao
,
P.
,
2016
, “
Sustainable Low-Cost Green Electrodes With High Volumetric Capacitance for Aqueous Symmetric Supercapacitors With High Energy Density
,”
ACS Sustainable Chem. Eng.
,
4
(
3
), pp.
1422
1430
.
3.
Kyeremateng
,
N. A.
,
Brousse
,
T.
, and
Pech
,
D.
,
2017
, “
Microsupercapacitors as Miniaturized Energy-Storage Components for On-Chip Electronics
,”
Nat. Nanotechnol.
,
12
(
1
), pp.
7
15
.
4.
Wang
,
G.
,
Zhang
,
L.
, and
Zhang
,
J.
,
2012
, “
A Review of Electrode Materials for Electrochemical Supercapacitors
,”
Chem. Soc. Rev.
,
41
(
2
), pp.
797
828
.
5.
Zhao
,
X.
,
Sánchez
,
B. M.
,
Dobson
,
P. J.
, and
Grant
,
P. S.
,
2011
, “
The Role of Nanomaterials in Redox-Based Supercapacitors for Next-Generation Energy Storage Devices
,”
Nanoscale
,
3
(
3
), pp.
839
855
.
6.
Simon
,
P.
,
Gogotsi
,
Y.
, and
Dunn
,
B.
,
2014
, “
Where Do Batteries End and Supercapacitors Begin?
,”
Science
,
343
(
6176
), pp.
1210
1211
.
7.
Simon
,
P.
, and
Gogotsi
,
Y.
,
2010
, “
“Materials for Electrochemical Capacitors,” Nanoscience and Technology: A Collection of Reviews From Nature Journals
,”
World Sci.
,
7
(
11
), pp.
320
329
.
8.
Nugroho
,
A.
,
Erviansyah
,
F.
,
Floresyona
,
D.
,
Mahalingam
,
S.
,
Manap
,
A.
,
Afandi
,
N.
,
Lau
,
K.
, and
Chia
,
C.
,
2022
, “
Synthesis and Characterization NS-Reduced Graphene Oxide Hydrogel and Its Electrochemical Properties
,”
Lett. Mater.
,
12
(
2
), pp.
169
174
.
9.
Ji
,
H.
,
Zhao
,
X.
,
Qiao
,
Z.
,
Jung
,
J.
,
Zhu
,
Y.
,
Lu
,
Y.
,
Zhang
,
L. L.
,
MacDonald
,
A. H.
, and
Ruoff
,
R. S.
,
2014
, “
Capacitance of Carbon-Based Electrical Double-Layer Capacitors
,”
Nat. Commun.
,
5
(
1
), p.
3317
.
10.
Jäckel
,
N.
,
Simon
,
P.
,
Gogotsi
,
Y.
, and
Presser
,
V.
,
2016
, “
Increase in Capacitance by Subnanometer Pores in Carbon
,”
ACS Energy Lett.
,
1
(
6
), pp.
1262
1265
.
11.
Ramavath
,
J. N.
,
Raja
,
M.
,
Kumar
,
S.
, and
Kothandaraman
,
R.
,
2019
, “
Mild Acidic Mixed Electrolyte for High-Performance Electrical Double Layer Capacitor
,”
Appl. Surf. Sci.
,
489
, pp.
867
874
.
12.
Choi
,
D.
,
Blomgren
,
G. E.
, and
Kumta
,
P. N.
,
2006
, “
Fast and Reversible Surface Redox Reaction in Nanocrystalline Vanadium Nitride Supercapacitors
,”
Adv. Mater.
,
18
(
9
), pp.
1178
1182
.
13.
Shi
,
J.
,
Jiang
,
B.
,
Li
,
C.
,
Yan
,
F.
,
Wang
,
D.
,
Yang
,
C.
, and
Wan
,
J.
,
2020
, “
Review of Transition Metal Nitrides and Transition Metal Nitrides/Carbon Nanocomposites for Supercapacitor Electrodes
,”
Mater. Chem. Phys.
,
245
, p.
122533
.
14.
Djire
,
A.
,
Pande
,
P.
,
Deb
,
A.
,
Siegel
,
J. B.
,
Ajenifujah
,
O. T.
,
He
,
L.
,
Sleightholme
,
A. E.
,
Rasmussen
,
P. G.
, and
Thompson
,
L. T.
,
2019
, “
Unveiling the Pseudocapacitive Charge Storage Mechanisms of Nanostructured Vanadium Nitrides Using In-Situ Analyses
,”
Nano Energy
,
60
, pp.
72
81
.
15.
Sahoo
,
M. K.
, and
Rao
,
G. R.
,
2018
, “
Fabrication of NiCo2S4 Nanoball Embedded Nitrogen-Doped Mesoporous Carbon on Nickel Foam as an Advanced Charge Storage Material
,”
Electrochim. Acta
,
268
, pp.
139
149
.
16.
Grace
,
A. N.
,
Ramachandran
,
R.
,
Vinoba
,
M.
,
Choi
,
S. Y.
,
Chu
,
D. H.
,
Yoon
,
Y.
,
Nam
,
S. C.
, and
Jeong
,
S. K.
,
2014
, “
Facile Synthesis and Electrochemical Properties of Co3S4-Nitrogen-Doped Graphene Nanocomposites for Supercapacitor Applications
,”
Electroanalysis
,
26
(
1
), pp.
199
208
.
17.
Zheng
,
J.
,
Cygan
,
P.
, and
Jow
,
T.
,
1995
, “
Hydrous Ruthenium Oxide as an Electrode Material for Electrochemical Capacitors
,”
J. Electrochem. Soc.
,
142
(
8
), pp.
2699
2703
.
18.
Augustyn
,
V.
,
Simon
,
P.
, and
Dunn
,
B.
,
2014
, “
Pseudocapacitive Oxide Materials for High-Rate Electrochemical Energy Storage
,”
Energy Environ. Sci.
,
7
(
5
), pp.
1597
1614
.
19.
Som
,
J.
,
Choi
,
J.
,
Zhang
,
H.
,
Reddy Mucha
,
N.
,
Fialkova
,
S.
,
Mensah-Darkwa
,
K.
,
Suntivich
,
J.
,
Gupta
,
R. K.
, and
Kumar
,
D.
,
2022
, “
Effect of Substrate-Induced Lattice Strain on the Electrochemical Properties of Pulsed Laser Deposited Nickel Oxide Thin Film
,”
Mater. Sci. Eng. B
,
280
, p.
115711
.
20.
Kartachova
,
O.
,
Glushenkov
,
A. M.
,
Chen
,
Y.
,
Zhang
,
H.
,
Dai
,
X. J.
, and
Chen
,
Y.
,
2012
, “
Electrochemical Capacitance of Mesoporous Tungsten Oxynitride in Aqueous Electrolytes
,”
J. Power Sources
,
220
, pp.
298
305
.
21.
Kumar
,
U. N.
,
Ghosh
,
S.
, and
Thomas
,
T.
,
2019
, “
Metal Oxynitrides as Promising Electrode Materials for Supercapacitor Applications
,”
ChemElectroChem
,
6
(
5
), pp.
1255
1272
.
22.
Roy
,
M.
,
Mucha
,
N. R.
,
Fialkova
,
S.
, and
Kumar
,
D.
,
2021
, “
Effect of Thickness on Metal-to-Semiconductor Transition in 2-Dimensional TiN Thin Films
,”
AIP Adv.
,
11
(
4
), p.
045204
.
23.
Sarkar
,
K.
,
Jaipan
,
P.
,
Choi
,
J.
,
Haywood
,
T.
,
Tran
,
D.
,
Mucha
,
N. R.
,
Yarmolenko
,
S.
,
Scott-Emuakpor
,
O.
,
Sundaresan
,
M.
, and
Gupta
,
R. K.
,
2020
, “
Enhancement in Corrosion Resistance and Vibration Damping Performance in Titanium by Titanium Nitride Coating
,”
SN Appl. Sci.
,
2
(
5
), pp.
1
14
.
24.
Jaipan
,
P.
,
Nannuri
,
C.
,
Mucha
,
N. R.
,
Singh
,
M. P.
,
Xu
,
Z.
,
Moatti
,
A.
,
Narayan
,
J.
, et al
,
2018
, “
Influence of Gold Catalyst on the Growth of Titanium Nitride Nanowires
,”
Mater. Focus
,
7
(
5
), pp.
720
725
.
25.
Ghosh
,
S.
,
Jeong
,
S. M.
, and
Polaki
,
S. R.
,
2018
, “
A Review on Metal Nitrides/Oxynitrides as an Emerging Supercapacitor Electrode Beyond Oxide
,”
Korean J. Chem. Eng.
,
35
(
7
), pp.
1389
1408
.
26.
Chen
,
T.-T.
,
Liu
,
H.-P.
,
Wei
,
Y.-J.
,
Chang
,
I.-C.
,
Yang
,
M.-H.
,
Lin
,
Y.-S.
,
Chan
,
K.-L.
,
Chiu
,
H.-T.
, and
Lee
,
C.-Y.
,
2014
, “
Porous Titanium Oxynitride Sheets as Electrochemical Electrodes for Energy Storage
,”
Nanoscale
,
6
(
10
), pp.
5106
5109
.
27.
Lee
,
E. J.
,
Lee
,
L.
,
Abbas
,
M. A.
, and
Bang
,
J. H.
,
2017
, “
The Influence of Surface Area, Porous Structure, and Surface State on the Supercapacitor Performance of Titanium Oxynitride: Implications for a Nanostructuring Strategy
,”
Phys. Chem. Chem. Phys.
,
19
(
31
), pp.
21140
21151
.
28.
Wang
,
Z.
,
Li
,
Z.
, and
Zou
,
Z.
,
2015
, “
Application of Binder-Free TiOxN1− x Nanogrid Film as a High-Power Supercapacitor Electrode
,”
J. Power Sources
,
296
, pp.
53
63
.
29.
Yu
,
M.
,
Han
,
Y.
,
Cheng
,
X.
,
Hu
,
L.
,
Zeng
,
Y.
,
Chen
,
M.
,
Cheng
,
F.
,
Lu
,
X.
, and
Tong
,
Y.
,
2015
, “
Holey Tungsten Oxynitride Nanowires: Novel Anodes Efficiently Integrate Microbial Chemical Energy Conversion and Electrochemical Energy Storage
,”
Adv. Mater.
,
27
(
19
), pp.
3085
3091
.
30.
Ghailane
,
A.
,
Oluwatosin
,
A. O.
,
Larhlimi
,
H.
,
Hejjaj
,
C.
,
Makha
,
M.
,
Busch
,
H.
,
Fischer
,
C. B.
, and
Alami
,
J.
,
2022
, “
Titanium Nitride, TiXN(1−X), Coatings Deposited by HiPIMS for Corrosion Resistance and Wear Protection Properties
,”
Appl. Surf. Sci.
,
574
, p.
151635
.
31.
Roy
,
M.
,
Sarkar
,
K.
,
Som
,
J.
,
Pfeifer
,
M. A.
,
Craciun
,
V.
,
Schall
,
J. D.
,
Aravamudhan
,
S.
,
Wise
,
F. W.
, and
Kumar
,
D.
,
2023
, “
Modulation of Structural, Electronic, and Optical Properties of Titanium Nitride Thin Films by Regulated In Situ Oxidation
,”
ACS Appl. Mater. Interfaces
,
15
(
3
), pp.
4733
4742
.
32.
Di
,
J.
,
Zhu
,
H.
,
Xia
,
J.
,
Bao
,
J.
,
Zhang
,
P.
,
Yang
,
S.-Z.
,
Li
,
H.
, and
Dai
,
S.
,
2019
, “
High-Performance Electrolytic Oxygen Evolution With a Seamless Armor Core–Shell FeCoNi Oxynitride
,”
Nanoscale
,
11
(
15
), pp.
7239
7246
.
33.
Haydous
,
F.
,
Dobeli
,
M.
,
Si
,
W.
,
Waag
,
F.
,
Li
,
F.
,
Pomjakushina
,
E.
,
Wokaun
,
A.
,
Gökce
,
B.
,
Pergolesi
,
D.
, and
Lippert
,
T.
,
2019
, “
Oxynitride Thin Films Versus Particle-Based Photoanodes: A Comparative Study for Photoelectrochemical Solar Water Splitting
,”
ACS Appl. Energy Mater.
,
2
(
1
), pp.
754
763
.
34.
Pichler
,
M.
,
Pergolesi
,
D.
,
Landsmann
,
S.
,
Chawla
,
V.
,
Michler
,
J.
,
Döbeli
,
M.
,
Wokaun
,
A.
, and
Lippert
,
T.
,
2016
, “
TiN-Buffered Substrates for Photoelectrochemical Measurements of Oxynitride Thin Films
,”
Appl. Surf. Sci.
,
369
(
1
), pp.
67
75
.
35.
Roy
,
M.
, and
Kumar
,
D.
, “
Blue Shift in Ultraviolet Absorption Spectra of Oxygen Doped Titanium Nitride Thin Films
,”
Proceedings of ASME 2020 International Mechanical Engineering Congress and Exposition
, p.
V003T03A020
.
36.
Roy
,
M.
,
2018
, “
Growth, Structural, and Electrical Properties of TiN Thin Films
,”
M.S. thesis
,
North Carolina Agricultural and Technical State University
,
Ann Arbor, MI
.
37.
Sherman
,
A.
,
1990
, “
Growth and Properties of LPCVD Titanium Nitride as a Diffusion Barrier for Silicon Device Technology
,”
J. Electrochem. Soc.
,
137
(
6
), pp.
1892
1897
.
38.
Naik
,
G. V.
,
Schroeder
,
J. L.
,
Ni
,
X.
,
Kildishev
,
A. V.
,
Sands
,
T. D.
, and
Boltasseva
,
A.
,
2012
, “
Titanium Nitride as a Plasmonic Material for Visible and Near-Infrared Wavelengths
,”
Opt. Mater. Expr.
,
2
(
4
), pp.
478
489
.
39.
Jia
,
L.
,
Lu
,
H.
,
Ran
,
Y.
,
Zhao
,
S.
,
Liu
,
H.
,
Li
,
Y.
,
Jiang
,
Z.
, and
Wang
,
Z.
,
2019
, “
Structural and Dielectric Properties of Ion Beam Deposited Titanium Oxynitride Thin Films
,”
J. Mater. Sci.
,
54
(
2
), pp.
1452
1461
.
40.
Maeda
,
K.
, and
Domen
,
K.
,
2011
, “
Oxynitride Materials for Solar Water Splitting
,”
MRS Bull.
,
36
(
1
), pp.
25
31
.
41.
Rawal
,
S. K.
,
Chawla
,
A. K.
,
Chawla
,
V.
,
Jayaganthan
,
R.
, and
Chandra
,
R.
,
2010
, “
Effect of Ambient Gas on Structural and Optical Properties of Titanium Oxynitride Films
,”
Appl. Surf. Sci.
,
256
(
13
), pp.
4129
4135
.
42.
Yoo
,
J. B.
,
Yoo
,
H. J.
,
Jung
,
H. J.
,
Kim
,
H. S.
,
Bang
,
S.
,
Choi
,
J.
,
Suh
,
H.
,
Lee
,
J.-H.
,
Kim
,
J.-G.
, and
Hur
,
N. H.
,
2016
, “
Titanium Oxynitride Microspheres With the Rock-Salt Structure for Use as Visible-Light Photocatalysts
,”
J. Mater. Chem. A
,
4
(
3
), pp.
869
876
.
43.
Miao
,
Z.
,
Huang
,
Y.
,
Xin
,
J.
,
Su
,
X.
,
Sang
,
Y.
,
Liu
,
H.
, and
Wang
,
J.-J.
,
2019
, “
High-Performance Symmetric Supercapacitor Constructed Using Carbon Cloth Boosted by Engineering Oxygen-Containing Functional Groups
,”
ACS Appl. Mater. Interfaces
,
11
(
19
), pp.
18044
18050
.
44.
Tian
,
X.
,
Luo
,
J.
,
Nan
,
H.
,
Zou
,
H.
,
Chen
,
R.
,
Shu
,
T.
,
Li
,
X.
, et al
,
2016
, “
Transition Metal Nitride Coated with Atomic Layers of Pt as a Low-Cost, Highly Stable Electrocatalyst for the Oxygen Reduction Reaction
,”
J. Am. Chem. Soc.
,
138
(
5
), pp.
1575
1583
.
45.
Pichler
,
M.
,
Si
,
W.
,
Haydous
,
F.
,
Téllez
,
H.
,
Druce
,
J.
,
Fabbri
,
E.
,
Kazzi
,
M. E.
, et al
,
2017
, “
LaTiOxNy Thin Film Model Systems for Photocatalytic Water Splitting: Physicochemical Evolution of the Solid–Liquid Interface and the Role of the Crystallographic Orientation
,”
Adv. Funct. Mater.
,
27
(
1
), p.
1605690
.
46.
Callister
,
W. D.
, and
Rethwisch
,
D. G.
,
2007
,
The Structure of Crystalline Solids Materials Science and Engineering an Introduction
, 7th ed.,
John Wiley and Sons, Inc.
,
Hoboken, NJ
.
47.
Mucha
,
N. R.
,
Som
,
J.
,
Choi
,
J.
,
Shaji
,
S.
,
Gupta
,
R. K.
,
Meyer
,
H. M.
,
Cramer
,
C. L.
,
Elliott
,
A. M.
, and
Kumar
,
D.
,
2020
, “
High-Performance Titanium Oxynitride Thin Films for Electrocatalytic Water Oxidation
,”
ACS Appl. Energy Mater.
,
3
(
9
), pp.
8366
8374
.
48.
Kumar
,
D.
,
Oktyabrsky
,
S.
,
Kalyanaraman
,
R.
,
Narayan
,
J.
,
Apte
,
P. R.
,
Pinto
,
R.
,
Manoharan
,
S. S.
,
Hegde
,
M. S.
,
Ogale
,
S. B.
, and
Adhi
,
K. P.
,
1997
, “
Role of Silver Doping in Oxygen Incorporation of Oxide Thin Film
,”
Mater. Sci. Eng. B
,
45
(
1
), pp.
55
58
.
49.
Yen
,
S. S.
,
Chiu
,
Y. C.
,
Cheng
,
C. H.
,
Chen
,
P. C.
,
Yeh
,
Y. C.
,
Tung
,
C. H.
,
Hsu
,
H. H.
, and
Chang
,
C. Y.
,
2016
, “
Gettering Effect Induced by Oxygen-Deficient Titanium Oxide in InZnO and InGaZnO Channel Systems for Low-Power Display Applications
,”
J. Disp. Technol.
,
12
(
3
), pp.
219
223
.
50.
Müller
,
J.
,
Singh
,
B.
, and
Surplice
,
N. A.
,
1972
, “
The Gettering Action of Evaporated Films of Titanium and Erbium
,”
J. Phys. D: Appl. Phys.
,
5
(
6
), pp.
1177
1184
.
51.
Avasarala
,
B.
, and
Haldar
,
P.
,
2010
, “
Electrochemical Oxidation Behavior of Titanium Nitride Based Electrocatalysts Under PEM Fuel Cell Conditions
,”
Electrochim. Acta
,
55
(
28
), pp.
9024
9034
.
52.
McKenna
,
K. P.
,
2018
, “
Structure, Electronic Properties, and Oxygen Incorporation/Diffusion Characteristics of the Σ 5 TiN (310)[001] Tilt Grain Boundary
,”
J. Appl. Phys.
,
123
(
7
), p.
075301
.
53.
Narayan
,
J.
, and
Larson
,
B.
,
2003
, “
Domain Epitaxy: A Unified Paradigm for Thin Film Growth
,”
J. Appl. Phys.
,
93
(
1
), pp.
278
285
.
54.
Moatti
,
A.
,
Bayati
,
R.
, and
Narayan
,
J.
,
2016
, “
Epitaxial Growth of Rutile TiO2 Thin Films by Oxidation of TiN/Si{100} Heterostructure
,”
Acta Mater.
,
103
, pp.
502
511
.
55.
Nawaz
,
R.
,
Kait
,
C. F.
,
Chia
,
H. Y.
,
Isa
,
M. H.
, and
Huei
,
L. W.
,
2019
, “
Glycerol-Mediated Facile Synthesis of Colored Titania Nanoparticles for Visible Light Photodegradation of Phenolic Compounds
,”
Nanomaterials
,
9
(
11
), p.
1586
.
56.
Végh
,
J.
,
2006
, “
The Shirley Background Revised
,”
J. Electron Spectrosc. Relat. Phenom.
,
151
(
3
), pp.
159
164
.
57.
Iwashita
,
S.
,
Aoyama
,
S.
,
Nasu
,
M.
,
Shimomura
,
K.
,
Noro
,
N.
,
Hasegawa
,
T.
,
Akasaka
,
Y.
, and
Miyashita
,
K.
,
2016
, “
Periodic Oxidation for Fabricating Titanium Oxynitride Thin Films Via Atomic Layer Deposition
,”
J. Vac. Sci. Technol., A
,
34
(
1
), p.
01A145
.
58.
Fakhouri
,
H.
,
Pulpytel
,
J.
,
Smith
,
W.
,
Zolfaghari
,
A.
,
Mortaheb
,
H. R.
,
Meshkini
,
F.
,
Jafari
,
R.
,
Sutter
,
E.
, and
Arefi-Khonsari
,
F.
,
2014
, “
Control of the Visible and UV Light Water Splitting and Photocatalysis of Nitrogen Doped TiO2 Thin Films Deposited by Reactive Magnetron Sputtering
,”
Appl. Catal., B
,
144
(
1
), pp.
12
21
.
59.
El-Deen
,
S. S.
,
Hashem
,
A. M.
,
Abdel Ghany
,
A. E.
,
Indris
,
S.
,
Ehrenberg
,
H.
,
Mauger
,
A.
, and
Julien
,
C. M.
,
2018
, “
Anatase TiO2 Nanoparticles for Lithium-Ion Batteries
,”
Ionics
,
24
(
10
), pp.
2925
2934
.
60.
Bradley
,
J. D.
,
Evans
,
C. C.
,
Choy
,
J. T.
,
Reshef
,
O.
,
Deotare
,
P. B.
,
Parsy
,
F.
,
Phillips
,
K. C.
,
Lončar
,
M.
, and
Mazur
,
E.
,
2012
, “
Submicrometer-Wide Amorphous and Polycrystalline Anatase TiO2 Waveguides for Microphotonic Devices
,”
Opt Expr.
,
20
(
21
), pp.
23821
23831
.
61.
Park
,
G. S.
,
Lee
,
S.
,
Kim
,
D.-S.
,
Park
,
S. Y.
,
Koh
,
J. H.
,
Won
,
D. H.
,
Lee
,
P.
,
Do
,
Y. R.
, and
Min
,
B. K.
,
2023
, “
Amorphous TiO2 Passivating Contacts for Cu(In,Ga)(S,Se)2 Ultrathin Solar Cells: Defect-State-Mediated Hole Conduction
,”
Adv. Energy Mater.
,
13
(
8
), p.
2203183
.
62.
Elgrishi
,
N.
,
Rountree
,
K. J.
,
McCarthy
,
B. D.
,
Rountree
,
E. S.
,
Eisenhart
,
T. T.
, and
Dempsey
,
J. L.
,
2018
, “
A Practical Beginner’s Guide to Cyclic Voltammetry
,”
J. Chem. Educ.
,
95
(
2
), pp.
197
206
.
63.
Fleischmann
,
S.
,
Mitchell
,
J. B.
,
Wang
,
R.
,
Zhan
,
C.
,
Jiang
,
D.-E.
,
Presser
,
V.
, and
Augustyn
,
V.
,
2020
, “
Pseudocapacitance: From Fundamental Understanding to High Power Energy Storage Materials
,”
Chem. Rev.
,
120
(
14
), pp.
6738
6782
.
64.
Gomez
,
J.
, and
Kalu
,
E. E.
,
2013
, “
High-Performance Binder-Free Co–Mn Composite Oxide Supercapacitor Electrode
,”
J. Power Sources
,
230
, pp.
218
224
.
65.
Zequine
,
C.
,
Ranaweera
,
C. K.
,
Wang
,
Z.
,
Singh
,
S.
,
Tripathi
,
P.
,
Srivastava
,
O. N.
,
Gupta
,
B. K.
, et al
,
2016
, “
High Performance and Flexible Supercapacitors Based on Carbonized Bamboo Fibers for Wide Temperature Applications
,”
Sci. Rep.
,
6
(
1
), p.
31704
.
66.
Khalafi
,
L.
,
Cunningham
,
A. M.
,
Hoober-Burkhardt
,
L. E.
, and
Rafiee
,
M.
,
2021
, “
Why Is Voltammetric Current Scan Rate Dependent? Representation of a Mathematically Dense Concept Using Conceptual Thinking
,”
J. Chem. Educ.
,
98
(
12
), pp.
3957
3961
.
67.
Mavrokefalos
,
C. K.
, and
Patzke
,
G. R.
,
2019
, “
Water Oxidation Catalysts: The Quest for New Oxide-Based Materials
,”
Inorganics
,
7
(
3
), p.
29
.
68.
Wilson
,
J. R.
,
Schwartz
,
D. T.
, and
Adler
,
S. B.
,
2006
, “
Nonlinear Electrochemical Impedance Spectroscopy for Solid Oxide Fuel Cell Cathode Materials
,”
Electrochim. Acta
,
51
(
8
), pp.
1389
1402
.
69.
Mucha
,
N.
,
Som
,
J.
,
Shaji
,
S.
,
Fialkova
,
S.
,
Apte
,
P.
,
Balasubramanian
,
B.
,
Shield
,
J.
,
Anderson
,
M.
, and
Kumar
,
D.
,
2020
, “
Electrical and Optical Properties of Titanium Oxynitride Thin Films
,”
J. Mater. Sci.
,
55
(
12
), pp.
5123
5134
.
70.
Yan
,
L.
,
Chen
,
G.
,
Tan
,
S.
,
Zhou
,
M.
,
Zou
,
G.
,
Deng
,
S.
,
Smirnov
,
S.
, and
Luo
,
H.
,
2015
, “
Titanium Oxynitride Nanoparticles Anchored on Carbon Nanotubes as Energy Storage Materials
,”
ACS Appl. Mater. Interfaces
,
7
(
43
), pp.
24212
24217
.
71.
Braic
,
M.
,
Balaceanu
,
M.
,
Vladescu
,
A.
,
Kiss
,
A.
,
Braic
,
V.
,
Epurescu
,
G.
,
Dinescu
,
G.
,
Moldovan
,
A.
,
Birjega
,
R.
, and
Dinescu
,
M.
,
2007
, “
Preparation and Characterization of Titanium Oxy-Nitride Thin Films
,”
Appl. Surf. Sci.
,
253
(
19
), pp.
8210
8214
.
72.
Zequine
,
C.
,
Bhoyate
,
S.
,
Wang
,
F.
,
Li
,
X.
,
Siam
,
K.
,
Kahol
,
P.
, and
Gupta
,
R.
,
2019
, “
Effect of Solvent for Tailoring the Nanomorphology of Multinary CuCo2S4 for Overall Water Splitting and Energy Storage
,”
J. Alloys Compd.
,
784
, pp.
1
7
.
73.
Mitchell
,
E.
,
Gupta
,
R. K.
,
Mensah-Darkwa
,
K.
,
Kumar
,
D.
,
Ramasamy
,
K.
,
Gupta
,
B. K.
, and
Kahol
,
P.
,
2014
, “
Facile Synthesis and Morphogenesis of Superparamagnetic Iron Oxide Nanoparticles for High-Performance Supercapacitor Applications
,”
New J. Chem.
,
38
(
9
), pp.
4344
4350
.
74.
Dubal
,
D. P.
,
Fulari
,
V. J.
, and
Lokhande
,
C. D.
,
2012
, “
Effect of Morphology on Supercapacitive Properties of Chemically Grown β-Ni(OH)2 Thin Films
,”
Microporous Mesoporous Mater.
,
151
, pp.
511
516
.
75.
Pimsawat
,
A.
,
Tangtrakarn
,
A.
,
Pimsawat
,
N.
, and
Daengsakul
,
S.
,
2019
, “
Effect of Substrate Surface Roughening on the Capacitance and Cycling Stability of Ni(OH)2 Nanoarray Films
,”
Sci. Rep.
,
9
(
1
), p.
16877
.
You do not currently have access to this content.