The Rolls-Royce integrated-planar solid oxide fuel cell (IP-SOFC) consists of ceramic modules with electrochemical cells printed on the outer surfaces. The cathodes are supplied with oxygen from air flowing over the outside of the module and the anodes are supplied with fuel diffusing from the internal gas channels. Natural gas is reformed into hydrogen in a separate reformer module of similar design except that the fuel cells are replaced by a reforming catalyst layer. The performance of the modules is intrinsically linked to the behavior of the gas flows within their porous structures. The multi-component convective-diffusive flows are simulated using a new theory of flow in porous material, the cylindrical pore interpolation model. The effects of the catalyzed methane reforming and water-gas shift chemical reactions are also considered using appropriate kinetic models. It is found that the shift reaction, which is catalyzed by the anode material, has certain beneficial effects on the fuel cell module performance. The shift reaction enables the fuel cells to make effective use of carbon monoxide as a fuel when the supplied fuel has become depleted of hydrogen. In the reformer module the kinetics of the reaction make it difficult to sustain a high methane conversion rate. Although the analysis is based on IP-SOFC geometry, the modeling approach and general conclusions are applicable to other types of SOFCs.

1.
Matsuzaki
,
I.
, and
Yasuda
,
I.
, 2000, “
Electrochemical Oxidation of H2 and CO in a H2‐H2O‐CO‐CO2 System at the Interface of a Ni‐YSZ Cermet Electrode and YSZ Electrolyte
,”
J. Electrochem. Soc.
0013-4651,
147
, pp.
1630
1635
.
2.
Holtappels
,
P.
,
DeHaart
,
L. G. J.
,
Stimming
,
U.
,
Vinke
,
I. C.
, and
Mogensen
,
M.
, 1999, “
Reaction of CO∕CO2 Gas Mixtures on Ni‐YSZ Cermet Electrodes
,”
J. Appl. Electrochem.
0021-891X,
29
, pp.
561
568
.
3.
Singhal
,
S. C.
, and
Kendall
,
K.
, eds., 2003,
High Temperature Solid Oxide Fuel Cells: Fundamentals, Design and Applications
,
Elsevier
, Amsterdam.
4.
Gardner
,
F. J.
,
Day
,
M. J.
,
Brandon
,
N. P.
,
Pashley
,
M. N.
, and
Cassidy
,
M.
, 2000, “
SOFC Technology Development at Rolls-Royce
,”
J. Power Sources
0378-7753,
86
, pp.
122
129
.
5.
Young
,
J. B.
, and
Todd
,
B.
, 2005, “
Modelling of Multi-Component Gas Flows in Capillaries and Porous Solids
,”
Int. J. Heat Mass Transfer
0017-9310,
48
, pp.
5338
5353
.
6.
Evans
,
R. B.
,
Watson
,
G. M.
, and
Truitt
,
J.
, 1962, “
Interdiffusion of Gases in a Low Permeability Graphite at Uniform Pressure
,”
J. Appl. Phys.
0021-8979,
33
, pp.
2682
2688
.
7.
Evans
,
R. B.
,
Watson
,
G. M.
, and
Truitt
,
J.
, 1963, “
Interdiffusion of Gases in a Low Permeability Graphite. (ii) Influence of Pressure Gradients
,”
J. Appl. Phys.
0021-8979,
34
, pp.
2020
2026
.
8.
Iwata
,
H.
,
Hikosaka
,
T.
,
Morita
,
M.
,
Iwanari
,
T.
,
Ito
,
K.
,
Onda
,
K.
,
Esaki
,
Y.
,
Sakaki
,
Y.
, and
Nagata
,
S.
, 2000, “
Performance Analysis of Planar-Type Unit SOFC Considering Current and Temperature Distributions
,”
Solid State Ionics
0167-2738,
132
, pp.
297
308
.
9.
Nagata
,
S.
,
Momma
,
A.
,
Kato
,
T.
, and
Kasuga
,
Y.
, 2001, “
Numerical Analysis of Output Characteristics of Tubular SOFC With Internal Reformer
,”
J. Power Sources
0378-7753,
101
, pp.
60
71
.
10.
Li
,
P-W.
, and
Chyu
,
M. K.
, 2003, “
Simulation of the Chemical/Electrochemical Reactions and Heat/Mass Transfer for a Tubular SOFC Stack
,”
J. Power Sources
0378-7753,
124
, pp.
487
498
.
11.
Roos
,
M.
,
Batawi
,
E.
,
Harnisch
,
U.
, and
Hocker
,
Th.
, 2003, “
Efficient Simulation of Fuel Cell Stacks With the Volume Averaging Method
,”
J. Power Sources
0378-7753,
118
, pp.
86
95
.
12.
Campanari
,
S.
, and
Iora
,
P.
, 2004, “
Definition and Sensitivity of a Finite Volume SOFC Model for a Tubular Cell Geometry
,”
J. Power Sources
0378-7753,
132
, pp.
113
126
.
13.
Aguiar
,
P.
,
Adjiman
,
C. S.
, and
Brandon
,
N. P.
, 2004, “
Anode-Supported Intermediate Temperature Direct Internal Reforming Solid Oxide Fuel Cell. (i) Model-Based Steady-State Performance
,”
J. Power Sources
0378-7753,
132
, pp.
120
136
.
14.
Costamagna
,
P.
,
Selimovic
,
A.
,
Del Borghi
,
M.
, and
Agnew
,
G.
, 2004, “
Electrochemical Model of the Integrated Planar Solid Oxide Fuel Cell
,”
Chem. Eng. J.
0300-9467,
102
, pp.
61
69
.
15.
Chan
,
S. C.
,
Khor
,
K. A.
, and
Xia
,
Z. T.
, 2001, “
A Complete Polarization Model of a Solid Oxide Fuel Cell and Its Sensitivity to Change of Cell Component Thickness
,”
J. Power Sources
0378-7753,
93
, pp.
130
140
.
16.
Lehnert
,
W.
,
Meusinger
,
J.
, and
Thom
,
F.
, 2000, “
Modelling of Gas Transport Phenomena in SOFC Anodes
,”
J. Power Sources
0378-7753,
87
, pp.
57
63
.
17.
Ackmann
,
T.
,
Haart
,
L. G. J.
,
Lehnert
,
W.
, and
Stolten
,
D.
, 2003, “
Modelling of Mass and Heat Transport in Planar Substrate Type SOFCs
,”
J. Electrochem. Soc.
0013-4651,
150
, pp.
783
789
.
18.
Haberman
,
B. A.
, and
Young
,
J. B.
, 2004, “
Three-Dimensional Simulation of Chemically Reacting Gas Flows in the Porous Support Structure of an Integrated-Planar Solid Oxide Fuel Cell
,”
Int. J. Heat Mass Transfer
0017-9310,
47
, pp.
3617
3629
.
19.
Twigg
,
M. V.
, ed., 1989,
Catalyst Handbook
,
Wolfe
, pp.
537
and
543
.
20.
Graven
,
W. M.
, and
Long
,
F. J.
, 1954, “
Kinetics and Mechanisms of the Two Opposing Reactions of the Equilibrium CO+H2O=CO2+H2
,”
J. Am. Chem. Soc.
0002-7863,
76
, pp.
2606
2607
.
21.
Bustamante
,
F.
,
Enick
,
R. M.
,
Rothenburger
,
K. S.
,
Howard
,
B. H.
,
Cugini
,
A. V.
,
Killmeyer
,
R. P.
,
Ciocco
,
M. V.
,
Morreale
,
B. D.
,
Chattopadhyay
,
S.
, and
Shi
,
S.
, 2004, “
High Temperature Kinetics of the Homogeneous Reverse Water-Gas Shift Reaction
,”
AIChE J.
0001-1541,
50
, pp.
1028
1041
.
22.
Haberman
,
B. A.
, and
Young
,
J. B.
, 2005, “
Numerical Investigation of the Air Flow Through a Bundle of IP-SOFC Modules
,”
Int. J. Heat Mass Transfer
0017-9310,
48
, pp.
5475
5487
.
You do not currently have access to this content.