A new high temperature fuel cell-micro gas turbine physical emulator has been designed and installed in the framework of the European Integrated Project “FELICITAS” at the Thermochemical Power Group (TPG) laboratory located at Savona. The test rig is based on a commercial 100 kWe recuperated micro gas turbine (mGT) (Turbec T100) modified to be connected to a modular volume designed for physical emulation of fuel cell stack influence. The test rig has been developed starting with a complete theoretical analysis of the micro gas turbine design and off-design performance and with the definition of the more flexible layout to be used for different hybrid system (molten carbonate fuel cell or solid oxide fuel cell) emulation. The layout of the system (connecting pipes, valves, and instrumentation, in particular mass flow meter locations) has been carefully designed, and is presented in detail in this paper. Particular attention has been focused on the viscous pressure loss minimization: (i) to reduce the unbalance between compressor and expander, (ii) to maintain a high measurement precision, and (iii) to have an effective plant flexibility. Moreover, the volume used to emulate the cell stack has been designed to be strongly modular (different from a similar system developed by U.S. Department Of Energy-National Energy Technology Laboratory) to allow different volume size influence on the mGT rig to be easily tested. The modular high temperature volume has been designed using a computational fluid dynamics (CFD) commercial tool (FLUENT). The CFD analysis was used (i) to reach a high level of uniformity in the flow distribution inside the volume, (ii) to have a velocity field (m/s) similar to the one existing inside the emulated cell stack, and (iii) to minimize (as possible) the pressure losses. The volume insulation will also allow to consider a strong thermal capacity effect during the tests. This paper reports the experimental results of several tests carried out on the rig (using the mGT at electrical stand-alone conditions with the machine control system operating at constant rotational speed) at different load values and at both steady-state and transient conditions.

1.
Azegami
,
O.
,
Hamai
,
M.
,
Itou
,
K.
, and
Higuchi
,
M.
, 2006, “
Development of a Pressurized MCFC/MGT Hybrid System
,” ASME Paper No. GT2006-90643.
2.
Roberts
,
R. A.
,
Brouwer
,
J.
,
Liese
,
E.
, and
Gemmen
,
R.
, 2005, “
Development of Controls for Dynamic Operation of Carbonate Fuel Cell-Gas Turbine Hybrid Systems
,” ASME Paper No. GT2005-68774.
3.
Bedont
,
P.
,
Grillo
,
O.
, and
Massardo
,
A. F.
, 2002, “
Off-Design Performance Analysis of a Hybrid System Based on an Existing MCFC Stack
,” ASME Paper No. 2002-GT-30115.
4.
Veyo
,
S. E.
,
Shockling
,
L. A.
,
Dederer
,
J. T.
,
Gillet
,
J. E.
, and
Lundberg
,
W. L.
, 2002, “
Tubular Solid Oxide Fuel Cell/Gas Turbine Hybrid Cycle Power Systems: Status
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
124
, pp.
845
849
.
5.
Agnew
,
G. D.
,
Bozzolo
,
M.
,
Moritz
,
R. R.
, and
Berenyi
,
S.
, 2005, “
The Design and Integration of the Rolls-Royce Fuel Cell Systems 1 MW SOFC
,” ASME Paper No. GT2005-69122.
6.
Yang
,
J. S.
,
Sohn
,
J. L.
, and
Ro
,
S. T.
, 2007, “
Strategies to Enhance the Part-Load Performance of a SOFC/GT Hybrid System
” ASME Paper No. GT2007-27441.
7.
Singhal
,
S. C.
, 2000, “
Advances in Solid Oxide Fuel Cell Technology
,”
Solid State Ionics
0167-2738,
135
, pp.
305
313
.
8.
Hirscenhofer
,
J. H.
,
Stauffer
,
D. B.
,
Engleman
,
R. R.
, and
Klett
,
M. G.
, 1998, “
Fuel Cell Handbook
,”
US Department of Energy
, DOE Report No. DOE/FETC-99/1076.
9.
Pålsson
,
J.
,
Selimovic
,
A.
, and
Sjunnesson
,
L.
, 2000, “
Combined Solid Oxide Fuel Cell and Gas Turbine Systems for Efficient Power and Heat Generation
,”
J. Power Sources
0378-7753,
86
, pp.
442
448
.
10.
Tison
,
R.
, 2000,
Microturbines in the New Millennium
,
Energy, Southwestern Energy
, pp.
17
20
.
11.
Ferrari
,
M. L.
,
Magistri
,
L.
,
Traverso
,
A.
, and
Massardo
,
A. F.
, 2005, “
Control System for Solid Oxide Fuel Cell Hybrid Systems
,” ASME Paper No. 2005-GT-68102.
12.
Shelton
,
M.
,
Liese
,
E.
,
Tucker
,
D.
,
Lawson
,
L. O.
, and
Celik
,
I.
, 2005, “
A Transient Model of a Hybrid Fuel Cell/Gas Turbine Test Facility Using Simulink
,” ASME Paper No. GT2005-68467.
13.
Ferrari
,
M. L.
,
Liese
,
E.
,
Tucker
,
D.
,
Lawson
,
L.
,
Traverso
,
A.
, and
Massardo
,
A. F.
, 2007, “
Transient Modeling of the NETL Hybrid Fuel Cell/Gas Turbine Facility and Experimental Validation
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
129
, pp.
1012
1019
.
14.
Tucker
,
D.
,
Liese
,
E.
,
Van Osdol
,
J. G.
,
Lawson
,
L. O.
, and
Gemmen
,
R. S.
, 2003, “
Fuel Cell Gas Turbine Hybrid Simulation Facility Design
,”
2003 ASME International Mechanical Engineering Congress and Exposition
, New Orleans, LA.
15.
Tucker
,
D.
,
Lawson
,
L.
,
VanOsdol
,
J.
,
Kislear
,
J.
, and
Akinbobuyi
,
A.
, 2006, “
Examination of Ambient Pressure Effects on Hybrid Solid Oxide Fuel Cell Turbine System Operation Using Hardware Simulation
,” ASME Paper No. 2006-GT-91291.
16.
Tucker
,
D.
,
Liese
,
E.
,
Lawson
,
L.
,
Gemmen
,
R. S.
,
Shelton
,
M. S.
, and
Ruehl
,
D.
, 2004, “
Technical Description of the Hybrid Performance Project Facility and System Model
,”
U.S. Department of Energy
, Technical Note.
17.
Tucker
,
D.
,
Lawson
,
L.
, and
Gemmen
,
R. S.
, 2005, “
Characterisation of Air Flow Management and Control in a Fuel Cell Turbine Hybrid Power System Using Hardware Simulation
,” ASME Paper No. PWR2005-50127.
18.
Ferrari
,
M. L.
,
Bernardi
,
D.
, and
Massardo
,
A. F.
, 2006, “
Design and Testing of Ejectors for High Temperature Fuel Cell Hybrid Systems
,”
ASME J. Fuel Cell Sci. Technol.
1550-624X,
3
, pp.
284
291
, Paper No. FC-05-1137.
19.
Ferrari
,
M. L.
,
Traverso
,
A.
,
Pascenti
,
M.
, and
Massardo
,
A. F.
, 2007, “
Early Start-Up of SOFC Hybrid Systems With Ejector Cathodic Recirculation: Experimental Results and Model Verification
,”
Proc. Inst. Mech. Eng., Part A
,
221
, pp.
627
635
.
20.
Turbec T100 Series 3, 2002, “
Installation Handbook
.”
21.
Pascenti
,
M.
,
Ferrari
,
M. L.
,
Magistri
,
L.
, and
Massardo
,
A. F.
, 2007, “
Micro Gas Turbine Based Test Rig for Hybrid System Emulation
,” ASME Paper No. GT2007-27075.
22.
Traverso
,
A.
,
Calzolari
,
F.
, and
Massardo
,
A. F.
, 2005, “
Transient Behavior of and Control System for Micro Gas Turbine Advanced Cycles
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
127
, pp.
340
347
.
23.
Traverso
,
A.
, 2004, “
TRANSEO: A New Simulation Tool for Transient Analysis of Innovative Energy Systems
,” Ph.D. thesis, TPG-DiMSET, University of Genoa, Genoa, Italy.
24.
Ferrari
,
M. L.
, 2006, “
Transient Analysis of Solid Oxide Fuel Cell Hybrid Plants and Control System Development
,” Ph.D. thesis, TPG-DiMSET, University of Genoa, Genoa, Italy.
25.
Ferrari
,
M. L.
,
Traverso
,
A.
, and
Massardo
,
A. F.
, 2004, “
Transient Analysis of Solid Oxide Fuel Cell Hybrids. Part B: Anode Recirculation Model
,” ASME Paper No. 2004-GT-53716.
26.
Traverso
,
A.
,
Magistri
,
L.
,
Scarpellini
,
R.
, and
Massardo
,
A. F.
, 2003, “
Demonstration Plant and Expected Performance of an Externally Fired Micro Gas Turbine for Distributed Power Generation
,” ASME Paper No. 2003-GT-38268.
27.
LARGE-SOFC European Integrated Project No. 019739, 2006, Annex 1.
You do not currently have access to this content.