Performance degradation and durability of polymer electrolyte membrane (PEM) fuel cells depend strongly on transport and deformation characteristics of their components especially the polymer membrane. Physical properties of membranes, such as ionic conductivity and Young’s modulus, depend on the water content that varies significantly with operating conditions and during transients. Recent studies indicate that cyclic transients may induce hygrothermal fatigue that leads to the ultimate failure of the membrane shortening its lifetime and, thus, hindering the reliable use of PEM fuel cells for automotive applications. In this work, we present two-dimensional simulations and analysis of coupled deformation and transport in PEM fuel cells to improve the understanding of membrane deformation under steady-state and transient conditions. A two-dimensional cross section of anode and cathode gas diffusion layers, and the membrane sandwiched between them is modeled using Maxwell–Stefan equations for species transport in gas diffusion layers, Biot’s poroelasticity, Darcy’s law for deformation and water transport in the membrane, and Ohm’s law for ionic currents in the membrane and electric currents in the gas diffusion layers. Steady-state deformation and transport of water in the membrane, transient responses to step changes in load, and relative humidity of the anode and cathode are obtained from simulation experiments, which are conducted by means of a commercial finite-element package, COMSOL MULTIPHYSICS.

1.
Benziger
,
J.
,
Chia
,
E.
,
Moxley
,
J. F.
, and
Kevrekidis
,
I. G.
, 2005, “
The Dynamic Response of PEM Fuel Cells to Changes in Load
,”
Chem. Eng. Sci.
0009-2509,
60
, pp.
1743
1759
.
2.
Kusoglu
,
A.
,
Karlsson
,
A. M.
,
Santare
,
M.
,
Cleghorn
,
S.
, and
Johnson
,
W. B.
, 2007, “
Mechanical Behavior of Fuel Cell Membranes Under Humidity Cycles and Effect of Swelling Anisotropy on the Fatigue Stresses
,”
J. Power Sources
0378-7753,
170
, pp.
345
358
.
3.
Solasi
,
R.
,
Zou
,
Y.
,
Huang
,
X.
,
Reifsnider
,
K.
, and
Condit
,
D.
, 2007, “
On Mechanical Behavior and In-Plane Modeling of Constrained PEM Fuel Cell Membranes Subjected to Hydration and Temperature Cycles
,”
J. Power Sources
0378-7753,
167
, pp.
366
377
.
4.
Berning
,
T.
, and
Djilai
,
N.
, 2003, “
A 3D, Multiphase, Multicomponent Model of the Cathode and Anode of a PEM Fuel Cell
,”
J. Electrochem. Soc.
0013-4651,
150
(
12
), pp.
A1589
A1598
.
5.
Pasaogullari
,
U.
, and
Wang
,
C. -Y.
, 2005, “
Two-Phase Modeling and Flooding Prediction of Polymer Electrolyte Fuel Cells
,”
J. Electrochem. Soc.
0013-4651,
152
(
2
), pp.
A380
A390
.
6.
Serincan
,
M. F.
, and
Yesilyurt
,
S.
, 2007, “
Transient Analysis of Proton Electrolyte Membrane Fuel Cells (PEMFC) at Startup and Shutdown
,”
Fuel Cells
0532-7822,
7
(
2
), pp.
118
127
.
7.
Shah
,
A. A.
,
Kim
,
G. S.
,
Sui
,
P. C.
, and
Harvey
,
D.
, 2007, “
Transient Non-Isothermal Model of a Polymer Electrolyte Fuel Cell
,”
J. Power Sources
0378-7753,
163
, pp.
793
806
.
8.
Zhou
,
P.
,
Wu
,
C. W.
, and
Ma
,
G. J.
, 2007, “
Influence of Clamping Force on the Performance of PEMFCs
,”
J. Power Sources
0378-7753,
163
, pp.
874
881
.
9.
Tang
,
Y.
,
Santare
,
M. H.
,
Karlsson
,
A. M.
,
Cleghorn
,
S.
, and
Johnson
,
W. B.
, 2006, “
Stresses in Proton Exchange Membranes Due to Hygro-Thermal Loading
,”
ASME J. Fuel Cell Sci. Technol.
1550-624X,
3
, pp.
119
124
.
10.
Choi
,
P.
,
Jalani
,
N. H.
, and
Datta
,
R.
, 2005, “
Thermodynamics and Proton Transport in Nafion I: Membrane Swelling, Sorption, and Ion-Exchange Equilibrium
,”
J. Electrochem. Soc.
0013-4651,
152
(
3
), pp.
E84
E89
.
11.
Nazarov
,
I.
, and
Promislow
,
K.
, 2007, “
The Impact of Membrane Constraint on PEM Fuel Cell Water Management
,”
J. Electrochem. Soc.
0013-4651,
154
(
7
), pp.
B623
B630
.
12.
Wang
,
H. F.
, 2000,
Theory of Linear Poroelasticity With Applications to Geomechanics and Hydrogeology
,
Princeton University Press
,
Princeton, NJ
.
13.
Eikerling
,
M.
,
Kharkats
,
Y. I.
,
Kornyshev
,
A. A.
, and
Volfkovich
,
Y. M.
, 1998, “
Phenomenological Theory of Electro-Osmotic Effect and Water Management in Polymer Electrolyte Proton-Conducting Membranes
,”
J. Electrochem. Soc.
0013-4651,
145
(
8
), pp.
2684
2699
.
14.
COMSOL
, 2008, “
COMSOL Multiphysics User Guide
,” COMSOL A.B., Stockholm.
15.
Yesilyurt
,
S.
, 2007, “
Three-Dimensional Simulations of Transient Response of PEM Fuel Cells
,”
Proceedings of the IMECE2007
, Seattle, WA.
16.
Bird
,
R. B.
,
Stewart
,
W. E.
, and
Lightfoot
,
E. N.
, 2002,
Transport Phenomena
, 2nd ed.,
Wiley
,
New York
.
17.
Kulikovsky
,
A. A.
, 2003, “
Quasi-3D Modeling of Water Transport in Polymer Electrolyte Fuel Cells
,”
J. Electrochem. Soc.
0013-4651,
150
(
11
), pp.
A1432
A1439
.
18.
Springer
,
T. E.
,
Zawodzinski
,
T. A.
, and
Gottesfeld
,
S.
, 1991, “
Polymer Electrolyte Fuel Cell Model
,”
J. Electrochem. Soc.
0013-4651,
138
(
8
), pp.
2334
2342
.
19.
Barbir
,
F.
, 2005,
PEM Fuel Cells: Theory and Practice
,
Academic
,
New York
.
20.
Parthasarathy
,
A.
,
Srinivasan
,
S.
, and
Appleby
,
A. J.
, 1992, “
Temperature Dependence of the Electrode Kinetics of Oxygen Reduction at the Platinum/Nafion Interface—A Microelectrode Investigation
,”
J. Electrochem. Soc.
0013-4651,
139
(
9
), pp.
2530
2537
.
21.
Ge
,
S.
,
Li
,
X.
,
Yi
,
B.
, and
Hsing
,
I. -M.
, 2005, “
Absorption, Desorption, and Transport of Water in Polymer Electrolyte Membranes for Fuel Cells
,”
J. Electrochem. Soc.
0013-4651,
152
(
6
), pp.
A1149
A1157
.
22.
Eikerling
,
M.
,
Kornyshev
,
A. A.
, and
Stimming
,
U.
, 1997, “
Electrophysical Properties of Polymer Electrolyte Membranes: A Random Network Model
,”
J. Phys. Chem.
0022-3654,
101
, pp.
10807
10820
.
23.
Jalani
,
N. H.
,
Choi
,
P.
, and
Datta
,
R.
, 2004, “
Phenomenological Methanol Sorption Model for Nafion 117
,”
Solid State Ionics
0167-2738,
175
, pp.
815
817
.
24.
Lee
,
W. -K.
,
Ho
,
C. -H.
,
Van Zee
,
J. W.
, and
Murthy
,
M.
, 1999, “
The Effects of Compression and Gas Diffusion Layers on the Performance of a PEM Fuel Cell
,”
J. Power Sources
0378-7753,
84
, pp.
45
51
.
25.
Wang
,
Y.
, and
Wang
,
C. -Y.
, 2005, “
Transient Analysis of Polymer Electrolyte Fuel Cells
,”
Electrochim. Acta
0013-4686,
50
, pp.
1307
1315
.
You do not currently have access to this content.