This paper presents the ac impedance study and analysis of a proton exchange membrane (PEM) fuel cell operated under various loading conditions. Ballard’s 1.2 kW Nexa fuel cell used for this study is integrated with a control system. The PEM fuel cell stack was operated using room air and pure hydrogen (99.995%) as input. Impedance data were collected for the fuel cell to study the behavior of the stack and groups of cells under various loads. Single cell impedance analysis was also performed for individual cells placed at different locations in the stack. The ac impedance analysis, also known as electrochemical impedance analysis, showed low frequency inductive effects and mass transport losses due to liquid water accumulation at high current densities. Results show that the stack run time to achieve steady state for impedance measurements is important. Using impedance plots, the average Ohmic resistance for the whole stack was estimated to be 41mΩ, the same value obtained when summing the resistance value of all individual cells. Impedance analysis for groups of cells at different locations in the stack shows changes in both polarization resistance and capacitive component only in the low frequency region. At high frequencies, single cell inductive and capacitive behavior varied as a function of location in the stack. The effects of artifacts on the high frequency loop and on the high and low frequency intercept loops are also discussed.

1.
Hombrados
,
A. G.
,
Gonzalez
,
L.
,
Rubio
,
M. A.
,
Agila
,
W.
,
Villanueva
,
E.
,
Guinea
,
D.
,
Chinarro
,
E.
,
Moreno
,
B.
, and
Jurando
,
J. R.
, 2005, “
Symmetrical Electric Mode for PEMFC Characterization Using Impedance Spectroscopy
,”
J. Power Sources
0378-7753,
151
, pp.
25
31
.
2.
Saab
,
A. P.
,
Garzon
,
F. H.
, and
Zawodzinski
,
T. A.
, 2003, “
The Effects of Processing Conditions and Chemical Composition on Electronic and Ionic Resistivities of Fuel Cell Electrode Composites
,”
J. Electrochem. Soc.
0013-4651,
150
(
2
), pp.
A214
A218
.
3.
Li
,
G.
, and
Pickup
,
P. G.
, 2003, “
Ionic Conductivity of PEMFC Electrode—Effect of Nafion Loading
,”
J. Electrochem. Soc.
0013-4651,
150
(
11
), pp.
C745
C752
.
4.
Jaouen
,
F.
,
Lindbergh
,
G.
, and
Wiezell
,
K.
, 2003, “
Transients Techniques for Investigating Mass-Transport Limitations in Gas Diffusion Electrodes
,”
J. Electrochem. Soc.
0013-4651,
150
(
12
), pp.
A1711
A1717
.
5.
Ciureanu
,
M.
, and
Roberge
,
R.
, 2001, “
Electrochemical Impedance Study of PEM Fuel Cells, Experimental Diagnostics and Modeling of Air Cathodes
,”
J. Phys. Chem.
0022-3654,
105
, pp.
3531
3539
.
6.
Merida
,
W.
,
Harrington
,
D. A.
,
Le Canut
,
J. M.
, and
McLean
,
G.
, 2006, “
Characterization of Proton Exchange Membrane Fuel Cell (PEMFC) Failures via Electrochemical Impedance Spectroscopy
,”
J. Power Sources
0378-7753,
161
, pp.
264
274
.
7.
Yuan
,
X.
,
Sun
,
J. C.
,
Blanco
,
M.
,
Wang
,
H.
,
Zhang
,
J.
, and
Wilkinson
,
D.
, 2006, “
AC Impedance Diagnosis of a 500 W PEM Fuel Cell Stack, Part I: Stack Impedance
,”
J. Power Sources
0378-7753,
161
, pp.
920
928
.
8.
O’Hayre
,
R.
,
Cha
,
S.
,
Colella
,
W.
, and
Prinz
,
F.
, 2006,
Fuel Cell Fundamentals
,
Wiley
,
New York
, pp.
201
232
.
9.
Oszcipok
,
M.
,
Reimann
,
D.
,
Kronenwett
,
U.
,
Kreideweis
,
M.
, and
Zedda
,
M.
, 2005, “
Statistic Analysis of Operational Influences on the Cold Start Behavior of PEM Fuel Cells
,”
J. Power Sources
0378-7753,
145
, pp.
407
415
.
10.
Amphlett
,
J.
,
Peppley
,
B.
,
Halliop
,
E.
, and
Sadiq
,
A.
, 2001, “
The Effect of Anode Flow Characteristics and Temperature on the Performance of Direct Methanol Fuel Cell
,”
J. Power Sources
0378-7753,
96
, pp.
204
213
.
11.
Cleghorn
,
S.
,
Mayfield
,
D.
,
Moore
,
D.
,
Moore
,
J.
,
Rusch
,
G.
, and
Sherman
,
T.
, 2006, “
A Polymer Electrolyte Fuel Cell Life Test: 3 Years of Continuous Operation
,”
J. Power Sources
0378-7753,
158
, pp.
446
454
.
12.
Song
,
H.
, and
Shin
,
D.
, 2001, “
Influence of CO Concentration and Reactant Gas Pressure on Cell Performance in PAFC
,”
Int. J. Hydrogen Energy
0360-3199,
26
, pp.
1259
1262
.
13.
Zhu
,
W.
,
Payne
,
R.
, and
Tararchuk
,
B.
, 2007, “
PEM Stack Test and Analysis in a Power System at Operational Load via ac Impedance
,”
J. Power Sources
0378-7753,
168
, pp.
211
217
.
14.
Yuan
,
X.
,
Sun
,
J. C.
,
Wang
,
H.
, and
Zhang
,
J.
, 2006, “
AC Impedance Diagnosis of a 500 W PEM Fuel Cell Stack, Part II: Individual Cell Impedance
,”
J. Power Sources
0378-7753,
161
, pp.
929
937
.
15.
Diard
,
J. P.
,
Le Gorrec
,
B.
,
Montella
,
C.
,
Poinsignon
,
G.
, and
Vitter
,
G.
, 1998, “
Impedance Measurement of Polymer Electrolyte Membrane Fuel Cell Running on Constant Load
,”
J. Power Sources
0378-7753,
74
, pp.
244
245
.
16.
Ciureanu
,
M.
,
Wang
,
H.
, and
Qi
,
Z.
, 1999, “
Electrochemical Impedance Study of Membrane-Electrode Assemblies in PEM Fuel Cells. II. Electrooxidation of H2 and H2/Co Mixtures on Pt/Ru-Based Gas-Diffusion Electrodes
,”
J. Phys. Chem.
0022-3654,
103
, pp.
9645
9657
.
18.
2003, Nexa Power Module User’s Manual.
21.
Wagner
,
N.
, and
Gulzow
,
E.
, 2004, “
Change of Electrochemical Impedance Spectra (EIS) With Time During CO-Poisoning of the Pt-Anode in a Membrane Fuel Cell
,”
J. Power Sources
0378-7753,
127
, pp.
341
347
.
23.
Princeton Applied Research
, 2005, “
Basics of Electrochemical Impedance Spectroscopy
,” Application Note AC-1.
24.
Yan
,
X.
,
Hou
,
M.
,
Sun
,
L.
,
Liang
,
D.
,
Shen
,
Q.
,
Xu
,
H.
,
Ming
,
P.
, and
Yi
,
B.
, 2007, “
AC Impedance Characteristics of a 2 kW PEM fuel Cell Stack Under Different Operating Conditions and Load Changes
,”
Int. J. Hydrogen Energy
0360-3199,
32
, pp.
4358
4364
.
25.
Romero-Castanon
,
T.
,
Arriaga
,
L. G.
, and
Cano-Castillo
,
U.
, 2003, “
Impedance Spectroscopy as a Tool in the Evaluation of MEA’s
,”
J. Power Sources
0378-7753,
118
, pp.
179
182
.
26.
Fischer
,
A.
,
Jindra
,
J.
, and
Wendt
,
H.
, 1998, “
Porosity and Catalyst Utilization of Thin Layer Cathodes in Air Operated PEM-Fuel Cells
,”
J. Appl. Electrochem.
0021-891X,
28
, pp.
277
282
.
27.
Jaouen
,
F.
,
Lindbergh
,
G.
, and
Sundholm
,
G.
, 2002, “
Investigation of Mass-Transport Limitations in the Solid Polymer Fuel Cell Cathode. I. Mathematical Model
,”
J. Electrochem. Soc.
0013-4651,
149
(
4
), pp.
A437
A447
.
28.
Ihonen
,
J.
,
Jaouen
,
F.
,
Lindbergh
,
G.
,
Lundblad
,
A.
, and
Sundholm
,
G.
, 2002, “
Investigation of Mass-Transport Limitations in the Solid Polymer Fuel Cell Cathode. II. Experimental
,”
J. Electrochem. Soc.
0013-4651,
149
(
4
), pp.
A448
A454
.
29.
Makharia
,
R.
,
Mathias
,
M.
, and
Baker
,
D.
, 2005, “
Measurement of Catalyst Layer Electrolyte Resistance in PEFCs Using Electrochemical Impedance Spectroscopy
,”
J. Electrochem. Soc.
0013-4651,
152
(
5
), pp.
A970
A977
.
30.
Roy
,
S.
,
Orazem
,
M.
, and
Tribollet
,
B.
, 2007, “
Interpretation of Low-Frequency Inductive Loops in PEM Fuel Cells
,”
J. Electrochem. Soc.
0013-4651,
154
(
12
), pp.
B1378
B1388
.
31.
Antoine
,
O.
,
Bultel
,
Y.
, and
Durand
,
R.
, 2001, “
Oxygen Reduction Reaction Kinetics and Mechanism on Platinum Nanoparticles Inside Nafion
,”
J. Electroanal. Chem.
0022-0728,
499
, pp.
85
94
.
32.
Perry
,
M. L.
,
Newman
,
J.
, and
Cairns
,
E. J.
, 1998, “
Mass Transport in Gas Diffusion Electrodes: A Diagnostic Tool for Fuel-Cell Cathode
,”
J. Electrochem. Soc.
0013-4651,
145
(
1
), pp.
5
15
.
33.
Chu
,
Y.
,
Shul
,
Y. G.
,
Choi
,
W. C.
,
Woo
,
S. I.
, and
Han
,
H.
, 2003, “
Evaluation of the Nafion Effect on the Activity of Pt-Ru Electrocatalysts for the Electro-Oxidation of Methanol
,”
J. Power Sources
0378-7753,
118
, pp.
334
341
.
34.
Freire
,
T. J. P.
, and
Gonzalez
,
E. R.
, 2001, “
Effect of Membrane Characteristics and Humidification Conditions on the Impedance Response of Polymer Electrolyte Fuel Cells
,”
J. Electroanal. Chem.
0022-0728,
503
, pp.
57
68
.
35.
Paganin
,
V. A.
,
Oliveira
,
C. L. F.
,
Ticianelli
,
E. A.
,
Springer
,
T. E.
, and
Gonzalez
,
E. R.
, 1998, “
Modelistic Interpretation of a Polymer Electrolyte Fuel Cell
,”
Electrochim. Acta
0013-4686,
43
(
24
), pp.
3761
3766
.
You do not currently have access to this content.