The porous diffusion medium (DM) used in fuel cells has a complex heterogeneous structure in which both hydrophilic and hydrophobic pores coexist. The capillary flow in such a mixed-wet DM is mainly controlled by the capillary pressure and saturation relation (CPSR). In order to investigate the water transport characteristics in a passive direct methanol fuel cell (DMFC), taking into account the coexistence of the hydrophilic and hydrophobic pores in the DM, we presented the mechanisms of capillary flow in the mixed-wet DM and provided a comprehensive evaluation of the CPSRs used in various existing fuel cell studies. Then, based on a two-dimensional, two-phase, nonisothermal model for the passive DMFC, we investigated the liquid transport phenomena through the mixed-wet DM by employing an experimentally measured mixed-wet CPSR. Moreover, we compared the water transport predicted by the mixed-wet CPSR and the uniform-wet Leverett CPSR for better understanding of the liquid water transport in passive DMFCs. The results show that water transport in the passive DMFC depends greatly on the CPSR of the DM, which demonstrates an urgent need for the accurate CPSRs of the DM used in fuel cells. It is also shown that the dependence of water transport on the CPSRs can be significantly influenced by the use of a hydrophobic air filter layer at the cathode.

1.
Xu
,
C.
, and
Zhao
,
T. S.
, 2007, “
In-Situ Measurements of Water Crossover Through the Membranes for Direct Methanol Fuel Cells
,”
J. Power Sources
0378-7753,
168
, pp.
143
153
.
2.
Kim
,
D.
,
Cho
,
E. A.
,
Hong
,
S. -A.
,
Oh
,
I. -H.
, and
Ha
,
H. Y.
, 2004, “
Recent Progress in Passive Direct Methanol Fuel Cells at KIST
,”
J. Power Sources
0378-7753,
130
, pp.
172
177
.
3.
Guo
,
Z.
, and
Faghri
,
A.
, 2006, “
Development of Planar Air Breathing Direct Methanol Fuel Cell Stacks
,”
J. Power Sources
0378-7753,
160
, pp.
1183
1194
.
4.
Chen
,
R.
, and
Zhao
,
T. S.
, 2007, “
A Novel Electrode Architecture for Passive Direct Methanol Fuel Cells
,”
Electrochem. Commun.
1388-2481,
9
, pp.
718
724
.
5.
Guo
,
Z.
, and
Faghri
,
A.
, 2006, “
Miniature DMFCs With Passive Thermal-Fluids Management System
,”
J. Power Sources
0378-7753,
160
, pp.
1142
1155
.
6.
Xu
,
C.
,
Zhao
,
T. S.
, and
Yang
,
W. W.
, 2008, “
Modeling of Water Transport Through the Membrane Electrode Assembly for Direct Methanol Fuel Cells
,”
J. Power Sources
0378-7753,
178
, pp.
291
308
.
7.
Xu
,
C.
, and
Faghri
,
A.
, 2010, “
Water Transport Characteristics in a Passive Liquid-Feed DMFC
,”
Int. J. Heat Mass Transfer
0017-9310,
53
, pp.
1951
1966
.
8.
Chen
,
R.
,
Zhao
,
T. S.
,
Yang
,
W. W.
, and
Xu
,
C.
, 2008, “
Two-Dimensional Two-Phase Thermal Model for Passive DMFCs
,”
J. Power Sources
0378-7753,
175
, pp.
276
287
.
9.
Rice
,
J.
, and
Faghri
,
A.
, 2006, “
A Transient, Multi-Phase and Multi-Component Model of a New Passive DMFC
,”
Int. J. Heat Mass Transfer
0017-9310,
49
, pp.
4804
4820
.
10.
Rice
,
J.
, and
Faghri
,
A.
, 2008, “
Thermal And Start-Up Characteristics of a Miniature Passive Liquid Feed DMFC System, Including Continuous/Discontinuous Phase Limitations
,”
J. Heat Transfer
0022-1481,
130
, p.
062001
.
11.
Hwang
,
J. J.
,
Wu
,
S. D.
,
Lai
,
L. K.
,
Chen
,
C. K.
, and
Lai
,
D. Y.
, 2006, “
Effect of Breathing-Hole Size on the Electrochemical Species in a Free-Breathing Cathode of a DMFC
,”
J. Power Sources
0378-7753,
161
, pp.
240
249
.
12.
Chen
,
R.
, and
Zhao
,
T. S.
, 2005, “
Mathematical Modeling of a Passive-Feed DMFC With Heat Transfer Effect
,”
J. Power Sources
0378-7753,
152
, pp.
122
130
.
13.
Wang
,
Z. H.
,
Wang
,
C. Y.
, and
Chen
,
K. S.
, 2001, “
Two-Phase Flow and Transport in the Air Cathode of Proton Exchange Membrane Fuel Cells
,”
J. Power Sources
0378-7753,
94
, pp.
40
50
.
14.
Divisek
,
J.
,
Fuhrmann
,
J.
,
Gärtner
,
K.
, and
Jung
,
R.
, 2003, “
Performance Modeling of a Direct Methanol Fuel Cell
,”
J. Electrochem. Soc.
0013-4651,
150
, pp.
A811
A825
.
15.
Weber
,
A. Z.
,
Darling
,
R. M.
, and
Newman
,
J.
, 2004, “
Modeling Two-Phase Behavior in PEFCs
,”
J. Electrochem. Soc.
0013-4651,
151
, pp.
A1715
A1727
.
16.
Acosta
,
M.
,
Merten
,
C.
,
Eigenberger
,
G.
,
Class
,
H.
,
Helmig
,
R.
,
Thoben
,
B.
, and
Müller-Steinhagen
,
H.
, 2006, “
Modeling Non-Isothermal Two-Phase Multicomponent Flow in the Cathode of PEM Fuel Cells
,”
J. Power Sources
0378-7753,
159
, pp.
1123
1141
.
17.
Sinha
,
P. K.
,
Mukherjee
,
P. P.
, and
Wang
,
C. Y.
, 2007, “
Impact of GDL Structure and Wettability on Water Management in Polymer Electrolyte Fuel Cells
,”
J. Mater. Chem.
0959-9428,
17
, pp.
3089
3103
.
18.
Kumbur
,
E. C.
,
Sharp
,
K. V.
, and
Mench
,
M. M.
, 2007, “
On the Effectiveness of Leverett Approach for Describing the Water Transport in Fuel Cell Diffusion Media
,”
J. Power Sources
0378-7753,
168
, pp.
356
368
.
19.
Kumbur
,
E. C.
,
Sharp
,
K. V.
, and
Mench
,
M. M.
, 2007, “
Validated Leverett Approach for Multiphase Flow in PEFC Diffusion Media I. Hydrophobicity Effect
,”
J. Electrochem. Soc.
0013-4651,
154
, pp.
B1295
B1304
.
20.
Kumbur
,
E. C.
,
Sharp
,
K. V.
, and
Mench
,
M. M.
, 2007, “
Validated Leverett Approach for Multiphase Flow in PEFC Diffusion Media II. Compression Effect
,”
J. Electrochem. Soc.
0013-4651,
154
, pp.
B1305
B1314
.
21.
Kumbur
,
E. C.
,
Sharp
,
K. V.
, and
Mench
,
M. M.
, 2007, “
Validated Leverett Approach for Multiphase Flow in PEFC Diffusion Media III. Temperature Effect and Unified Approach
,”
J. Electrochem. Soc.
0013-4651,
154
, pp.
B1315
B1324
.
22.
Ramasamy
,
R. P.
,
Kumbur
,
E. C.
,
Mench
,
M. M.
,
Liu
,
W.
,
Moore
,
D.
, and
Murthy
,
M.
, 2008, “
Investigation of Macro- and Micro-Porous Layer Interaction in Polymer Electrolyte Fuel Cells
,”
Int. J. Hydrogen Energy
0360-3199,
33
, pp.
3351
3367
.
23.
Gostick
,
J. T.
,
Fowler
,
M. W.
,
Ioannidis
,
M. A.
,
Pritzker
,
M. D.
,
Volfkovich
,
Y. M.
, and
Sakars
,
A.
, 2006, “
Capillary Pressure and Hydrophilic Porosity in Gas Diffusion Layers for Polymer Electrolyte Fuel Cells
,”
J. Power Sources
0378-7753,
156
, pp.
375
387
.
24.
Gostick
,
J. T.
,
Ioannidis
,
M. A.
,
Fowler
,
M. W.
, and
Pritzker
,
M. D.
, 2008, “
Direct Measurement of the Capillary Pressure Characteristics of Water-Air-Gas Diffusion Layer Systems for PEM Fuel Cells
,”
Electrochem. Commun.
1388-2481,
10
, pp.
1520
1523
.
25.
Chapuis
,
O.
,
Prat
,
M.
,
Quintard
,
M.
,
Chane-Kane
,
E.
,
Guillot
,
Q.
, and
Mayer
,
N.
, 2008, “
Two-Phase Flow and Evaporation in Model Fibrous Media Application to the Gas Diffusion Layer of PEM Fuel Cells
,”
J. Power Sources
0378-7753,
178
, pp.
258
268
.
26.
Fairweather
,
J. D.
,
Cheung
,
P.
,
St-Pierre
,
J.
, and
Schwartz
,
D. T.
, 2007, “
A Microfluidic Approach for Measuring Capillary Pressure in PEMFC Gas Diffusion Layers
,”
Electrochem. Commun.
1388-2481,
9
, pp.
2340
2345
.
27.
Gallagher
,
K. G.
,
Darling
,
R. M.
,
Patterson
,
T. W.
, and
Perry
,
M. L.
, 2008, “
Capillary Pressure Saturation Relations for PEM Fuel Cell Gas Diffusion Layers
,”
J. Electrochem. Soc.
0013-4651,
155
, pp.
B1225
B1231
.
28.
Nguyen
,
T. V.
,
Lin
,
G.
,
Ohm
,
H.
, and
Wang
,
X.
, 2008, “
Measurement of Capillary Pressure Property of Gas Diffusion Media Used in Proton Exchange Membrane Fuel Cells
,”
Electrochem. Solid-State Lett.
1099-0062,
11
, pp.
B127
B131
.
29.
Ye
,
Q.
, and
Nguyen
,
T. V.
, 2007, “
Three-Dimensional Simulation of Liquid Water Distribution in a PEMFC With Experimentally Measured Capillary Functions
,”
J. Electrochem. Soc.
0013-4651,
154
, pp.
B1242
B1251
.
30.
Wang
,
X.
, and
Nguyen
,
T. V.
, 2008, “
Modeling the Effects of Capillary Property of Porous Media on the Performance of the Cathode of a PEMFC
,”
J. Electrochem. Soc.
0013-4651,
155
, pp.
B1085
B1092
.
31.
Ustohal
,
P.
,
Stauffer
,
F.
, and
Dracos
,
T.
, 1998, “
Measurement and Modeling of Hydraulic Characteristics of Unsaturated Porous Media With Mixed Wettability
,”
J. Contam. Hydrol.
0169-7722,
33
, pp.
5
37
.
32.
Faghri
,
A.
, and
Zhang
,
Y.
, 2006,
Transport Phenomena in Multiphase Systems
,
Elsevier
,
New York
.
33.
Nam
,
J. H.
, and
Kaviany
,
M.
, 2003, “
Effective diffusivity and Water-Saturation Distribution in Single- and Two-Layer PEMFC Diffusion Medium
,”
Int. J. Heat Mass Transfer
0017-9310,
46
, pp.
4595
4611
.
34.
Udell
,
K. S.
, 1985, “
Heat Transfer in Porous Media Considering Phase Change and Capillarity—The Heat Pipe Effect
,”
Int. J. Heat Mass Transfer
0017-9310,
28
, pp.
485
495
.
35.
Leverett
,
M. C.
, 1941, “
Capillary Behavior in Porous Solids
,”
Trans. AIME
0096-4778,
142
, pp.
152
168
.
36.
Natarajan
,
D.
, and
Nguyen
,
T. V.
, 2001, “
A Two-Dimensional, Two-Phase, Multicomponent, Transient Model for the Cathode of a Proton Exchange Membrane Fuel Cell Using Conventional Gas Distributors
,”
J. Electrochem. Soc.
0013-4651,
148
, pp.
A1324
1335
.
37.
Koido
,
T.
,
Furusawa
,
T.
, and
Moriyama
,
K.
, 2008, “
An approach to Modeling Two-Phase Transport in the Gas Diffusion Layer of a Proton Exchange Membrane Fuel Cell
,”
J. Power Sources
0378-7753,
175
, pp.
127
136
.
38.
Steinkamp
,
K.
,
Schumacher
,
J. O.
,
Goldsmith
,
F.
,
Ohlberger
,
M.
, and
Ziegler
,
C.
, 2008, “
A Nonisothermal PEM Fuel Cell Model Including Two Water Transport Mechanisms in the Membrane
,”
ASME J. Fuel Cell Sci. Technol.
1550-624X,
5
, p.
011007.
39.
Zamel
,
N.
, and
Li
,
X. G.
, 2008, “
A Parametric Study of Multi-Phase and Multi-Species Transport in the Cathode of PEM Fuel Cells
,”
Int. J. Energy Res.
0363-907X,
32
, pp.
698
721
.
40.
Bapat
,
C. J.
, and
Thynell
,
S. T.
, 2008, “
Effect of Anisotropic Thermal Conductivity of the GDL and Current Collector Rib Width on Two-Phase Transport in a PEM Fuel Cell
,”
J. Power Sources
0378-7753,
179
, pp.
240
251
.
41.
Liu
,
W. P.
, and
Wang
,
C. Y.
, 2007, “
Modeling Water Transport in Liquid Feed Direct Methanol Fuel Cells
,”
J. Power Sources
0378-7753,
164
, pp.
189
195
.
42.
Jewett
,
G.
,
Guo
,
Z.
, and
Faghri
,
A.
, 2007, “
Water and Air Management Systems for a Passive Direct Methanol Fuel Cell
,”
J. Power Sources
0378-7753,
168
, pp.
434
446
.
43.
Yang
,
W. W.
, and
Zhao
,
T. S.
, 2007, “
A Two-Dimensional, Two-Phase Mass Transport Model for Liquid-Feed DMFCs
,”
Electrochim. Acta
0013-4686,
52
, pp.
6125
6140
.
44.
Yang
,
W. W.
, and
Zhao
,
T. S.
, 2007, “
Two-Phase, Mass-Transport Model for Direct Methanol Fuel Cells With Effect of Non-Equilibrium Evaporation and Condensation
,”
J. Power Sources
0378-7753,
174
, pp.
136
147
.
45.
O’Hayre
,
R.
,
Fabian
,
T.
,
Litster
,
S.
,
Prinz
,
F. B.
, and
Santiago
,
J. G.
, 2007, “
Engineering Model of a Passive Planar Air Breathing Fuel Cell Cathode
,”
J. Power Sources
0378-7753,
167
, pp.
118
129
.
46.
Litster
,
S.
,
Pharoah
,
J. G.
,
McLean
,
G.
, and
Djilali
,
N.
, 2006, “
Computational Analysis of Heat and Mass Transfer in a Micro-Structured PEMFC Cathode
,”
J. Power Sources
0378-7753,
156
, pp.
334
344
.
You do not currently have access to this content.