This paper presents a solution methodology for the optimal placement of convectively and conductively air-cooled electronic components on planar printed wiring boards considering thermal and electrical/cost design objectives. The methodology combines the use of a heat transfer solver for the prediction of the temperature distribution among the electronic components and a genetic algorithm for the adaptive search of optimal or near optimal solutions and a multiobjective optimization strategy (Pareto optimization and multiattribute utility analysis). After proper validation of the elements of the solution methodology (heat transfer solver/genetic algorithm) in isolation, the methodology under consideration is tested using a placement problem (case study) that considers as optimization criteria the minimization of an estimate of the failure rate of the system of components due to thermal overheating (via an Arrhenius relation) and the minimization of the total wiring length given some interconnectivity requirements. Results corresponding to the case study are presented and discussed for both Pareto optimization and multiattribute utility analysis. [S1043-7398(00)00801-X]

1.
Moresco, L., 1989, “Electronic System Packaging: The Search for Manufacturing the Optimum in a Sea of Constraints,” Proceedings, Seventh IEEE/CHMT International Electronic Manufacturing Technology Symposium, pp. 149–164.
2.
Weiss, J., Fortner, P., Pearson, B., Watson, K., and Monroe, T., 1989, “Modeling Air Flow in Electronic Packages,” Mechanical Engineering, September, ASME, New York, pp. 56–58.
3.
Wessely
,
H.
,
Fritz
,
O.
,
Horn
,
M.
,
Klimke
,
P.
,
Koschnick
,
W.
, and
Schmidt
,
K.
,
1991
, “
Electronic Packaging in the 1990’s: The Perspective from Europe
,”
IEEE Trans. Compon., Hybrids, Manuf. Technol.
,
14
, No.
2
, June, pp.
272
284
.
4.
Dancer
,
D.
, and
Pecht
,
M.
,
1989
, “
Component-Placement Optimization for Convectively Cooled Electronics
,”
IEEE Trans. Syst. Man Cybern.
38
, No.
2
, June, pp.
199
205
.
5.
Osterman
,
M.
, and
Pecht
,
M.
,
1989
, “
Component Placement for Reliability on Conductively Cooled Printed Wired Boards
,”
ASME J. Electron. Packag.
,
111
, pp.
149
155
.
6.
Queipo
,
N.
,
Devarakonda
,
R.
, and
Humphrey
,
J.
,
1994
, “
Genetic Algorithms for Thermosciences Research: Application to the Optimized Cooling of Electronic Components
,”
Int. J. Heat Mass Transf.
,
37
, No.
6
, pp.
893
908
.
7.
Queipo, N., Humphrey, J., and Ortega, A., 1995, “Optimal Placement of Convectively and Conductively Cooled Electronic Components Using Genetic Algorithms,” Symposium in Honor of Chancellor Chang-Lin Tien, University of California at Berkeley, pp. 453–464.
8.
Queipo
,
N.
,
Humphrey
, and
J.
,
Ortega
,
A.
,
1998
, “
Multiobjective Optimization of Convectively Cooled Electronic Components on Printed Wiring Boards
,”
IEEE Trans. Compon., Packag. Manuf. Technol., Part A
,
21
, No.
1
, March, pp.
142
153
.
9.
Cahlon
,
B.
,
Gertsbakh
,
I.
,
Schochetman
,
I.
, and
Schillor
,
M.
,
1991
, “
A Model for the Convective Cooling of Electronic Components With Application to Optimal Placement
,”
Math. Comput. Modeling
,
15
, No.
2
, pp.
59
75
.
10.
Eliasi
,
R.
,
Elperin
,
T.
, and
Bar-Cohen
,
A.
,
1990
, “
Monte Carlo Thermal Optimization of Populated Printed Circuit Board
,”
IEEE Trans. Compon., Hybrids, Manuf. Technol.
,
13
, No.
4
, December, pp.
953
960
.
11.
Pecht
,
M.
,
Palmer
,
M.
,
Schenke
,
W.
, and
Porter
,
R.
,
1987
, “
An Investigation into PWB Component-Placement Tradeoffs
,”
IEEE Trans. Reliab.
,
R-36
, No.
5
, pp.
524
527
.
12.
Osterman
,
M.
, and
Pecht
,
M.
,
1990
, “
Placement for Reliability and Routability of Convectively Cooled PWB’s
,”
IEEE Trans. Comput.-Aided Des.
,
9
, No.
7
, July, pp.
734
744
.
13.
Balanchandran
,
M.
, and
Gero
,
J.
,
1984
, “
A Comparison of Three Methods for Generating the Pareto Optimal Set
,”
Eng. Opt.
,
7
, pp.
319
336
.
14.
Keeney, R., and Raiffa, H., 1993, Decision with Multiple Objectives, Cambridge University Press, Cambridge, England.
15.
Thurston
,
D.
,
1991
, “
A Formal Method for Subjective Design Evaluation With Multiple Attributes
,”
Res. Eng. Design
,
3
, pp.
105
122
.
16.
Culham
,
J.
,
Lee
,
S.
, and
Yovanovich
,
M.
,
1991
, “
The Effect of Common Design Parameters on the Thermal Performance of Microelectronic Equipment: Part II—Forced Convection
,”
ASME HTD Heat Transf. Elec. Equip.
171
, pp.
55
62
.
17.
Wong
,
K.
,
1990
, “
What is Wrong With the Existing Reliability Predictions Methods?
,”
Quality Reliab. Eng. Int.
,
6
, pp.
251
257
.
18.
Blanks
,
H.
,
1990
, “
Arrhenius and the Temperature Dependence of Non-Constant Failure Rate
,”
Quality Reliability Eng. Int.
,
6
, pp.
259
265
.
19.
De Jong
,
K.
,
1980
, “
Adaptive System Design: A Genetic Approach
,”
IEEE Trans. Syst. Man Cybern.
,
SMC-10
, No.
9
, September, pp.
566
574
.
20.
Steinberg, D., 1982, Cooling Techniques for Electronic Equipment, Wiley, New York.
21.
Queipo, N., 1995, On the Optimal Placement of Heat Sources in an Enclosure Based on Adaptive Search and Machine Learning, Ph.D. thesis, University of California at Berkeley, CA.
22.
Schraudolph, N., and Grefenstette, J., 1992, “A User’s Guide to GAucsd 1.4,” available via anonymous ftp from cs.ucsd.edu (132.239.51.3) in the pub/GAucsd directory.
23.
Press, W., Flannery, B., Teukolsky, S., and Vetterling, W., 1986, Numerical Recipes—The Art of Scientific Computing, Cambridge University Press, p. 197.
24.
Holland, J., 1975, Adaptation in Natural and Artificial Systems, The MIT Press, Cambridge, MA.
25.
Goldberg, D., 1989, Genetic Algorithms in Search, Optimization and Machine Learning, Addison-Wesley, Reading, MA.
26.
Horn, J., and Nafpliotis, N., 1993, “Multiobjective Optimization Using Niched Pareto Genetic Algorithms,” Illigal Report No. 93005, University of Illinois at Urbana-Champaign, IL.
27.
Schaumann, E., Balling, R., and Day, K., 1998, “Genetic Algorithms With Multiple Objectives,” Paper AIAA-98-4974, pp. 2114–2123.
You do not currently have access to this content.