Simulation tools today are well developed and make it possible to study more than one physical phenomena in the engineering processes. In this paper, a multi-physics simulation was performed to investigate the thermal, hydraulic and stress behavior of a flip-chip microprocessor package and a water-cooling thermal system. The distribution of the temperature, velocity, pressures, and stress inside the integrated circuit (IC) package and the water jacket was predicted and analyzed. The thermal resistance, Rjw, was defined and calculated to evaluate the overall thermal performance. The difference between the numerically predicted and the experimental result is within 10%. Thermal and hydraulic parametric studies were performed on the parameters such as the water flow rate, the die size, the channel height, and the base thickness of the water jacket. The impact of heater was also investigated to optimize the heater efficiency under different thermal contact between the IC package and the thermal head. Stress simulation was performed on the heater plate and the IC package subject to the temperature profile. The thermal stress and deformation were found to be at safe level under the given conditions. The results show that the use of multi-physics simulation and analysis can provide a deeper insight of complex processes, as well as to investigate the key parameters for system optimization. The numerical approach can reduce the risk and uncertainties at design stage as well as improve the system performance at the production stage.
Skip Nav Destination
Article navigation
September 2004
Research Papers
Multi-Physics Simulation of a Microprocessor Package Under Water Cooling
Mui Y. C.
Mui Y. C.
Advanced Micro Devices (S), Singapore 469032
Search for other works by this author on:
Liu Bao-Min
Mui Y. C.
Advanced Micro Devices (S), Singapore 469032
Contributed by the Electronic and Photonic Packaging Division for publication in the JOURNAL OF ELECTRONIC PACKAGING. Manuscript received August 2003; final revision, April 2004. Associate Editor: W. King.
J. Electron. Packag. Sep 2004, 126(3): 384-389 (6 pages)
Published Online: October 6, 2004
Article history
Received:
August 1, 2003
Revised:
April 1, 2004
Online:
October 6, 2004
Citation
Bao-Min, L., and Y. C., M. (October 6, 2004). "Multi-Physics Simulation of a Microprocessor Package Under Water Cooling ." ASME. J. Electron. Packag. September 2004; 126(3): 384–389. https://doi.org/10.1115/1.1774197
Download citation file:
Get Email Alerts
Cited By
Impact of Encapsulated Phase Change Material Additives for Improved Thermal Performance of Silicone Gel Insulation
J. Electron. Packag (December 2024)
Special Issue on InterPACK2023
J. Electron. Packag
Extreme Drop Durability of Sintered Silver Traces Printed With Extrusion and Aerosol Jet Processes
J. Electron. Packag (December 2024)
Related Articles
Measurement of Thermal Deformation of Interconnect Layers Using SIEM
J. Electron. Packag (September,2002)
Thermal Resistances of Circular Source on Finite Circular Cylinder With Side and End Cooling
J. Electron. Packag (June,2003)
Lead-On-Chip Versus Chip-On-Lead Packages and Solder Failure Criteria
J. Electron. Packag (September,2000)
Cross-Verification of Thermal Characterization of a
Microcooler
J. Electron. Packag (June,2007)
Related Chapters
Resistance Mythology
Hot Air Rises and Heat Sinks: Everything You Know about Cooling Electronics Is Wrong
Hitting the Wall
Hot Air Rises and Heat Sinks: Everything You Know about Cooling Electronics Is Wrong
Joint Thermal Resistance and Thermal Interface Materials
Thermal Management of Telecommunication Equipment, Second Edition