This paper summarizes the results of a program to construct an internal variable viscoplastic damage model to characterize 95.5Sn–3.9Ag–0.6Cu (wt.%) lead-free solder under cyclic thermomechanical loading conditions. A unified model is enhanced to account for a deteriorating microstructure through the use of an isotropic damage evolution equation. Model predictions versus experimental data are given for constant strain-rate tests that were conducted at strain rates of 4.2×105s1 and 8.3×104s1 over a temperature range from 25°Cto160°C; cyclic shear tests; and elevated-temperature creep tests. A description is given of how this work supports larger ongoing efforts to develop a predictive capability in materials aging and reliability, and solder interconnect reliability.

1.
Fossum
,
A. F.
, 1997, “
Parameter Estimation for an Internal Variable Model Using Nonlinear Optimization and Analytical/Numerical Response Sensitivities
,”
ASME J. Eng. Mater. Technol.
0094-4289,
119
, pp.
337
345
.
2.
Fossum
,
A. F.
, 1998, “
Rate Data and Material Model Parameter Estimation
,”
ASME J. Eng. Mater. Technol.
0094-4289,
120
, pp.
7
12
.
3.
Senseny
,
P. E.
, and
Fossum
,
A. F.
, 1995, “
On Testing Requirements for Viscoplastic Constitutive Parameter Estimation
,”
ASME J. Eng. Mater. Technol.
0094-4289,
117
, pp.
151
156
.
4.
Senseny
,
P. E.
, and
Fossum
,
A. F.
, 1996, “
Testing to Estimate the Munson-Dawson Parameters
,” in
Proceedings of the 4th Conference on the Mechanical Behavior of Salt
,
Ecole Polytechnique de Montreal
,
Montreal
.
5.
ASTM E9-89A, 1995, “
Standard Test Methods for Compression Testing of Metallic Materials at Room Temperature
,”
West Conshohoken, PA
, pp.
101
103
.
6.
Vianco
,
P.
, and
Rejent
,
J.
, 2003, “
The Compression Stress-Strain Behavior of Sn–Ag–Cu Solder
,”
J. Met.
0148-6608,
55
, p.
50
.
7.
Vianco
,
P.
,
Rejent
,
J.
, and
Kilgo
,
A.
, 2003, “
Time-Independent Mechanical and Physical Properties of the Ternary 95.5Sn–3.9Ag–0.6Cu Solder
,”
J. Electron. Mater.
0361-5235,
32
, p.
142
.
8.
Dieter
,
G.
, 1976,
Mechanical Metallurgy
,
McGraw-Hill
,
New York, NY
, pp.
348
351
.
9.
ASTM E111-82, 1995, “
Standard Test Methods for Young’s Modulus, Tangent Modulus, and Chord Modulus
,”
West Conshohoken, PA.
10.
Vianco
,
P.
,
Rejent
,
J.
, and
Kilgo
,
A.
, 2004, “
Creep Behavior of the Ternary 95.5Sn–3.9Ag–0.6Cu Solder: Part I—As-Cast Condition
,”
J. Electron. Mater.
0361-5235,
33
, pp.
1473
1484
.
11.
Fossum
,
A. F.
,
Callahan
,
G. D.
,
Van Sambeek
,
L. L.
, and
Senseny
,
P. E.
, 1988, “
How Should One-Dimensional Laboratory Equations be Cast Into Three-Dimensional Form?
,”
Key Questions in Rock Mechanics
,
Cundall
et al.
, eds.,
Balkema
,
Rotterdam
.
12.
Chan
,
K. S.
,
Bodner
,
S. R.
,
Fossum
,
A. F.
, and
Munson
,
D. E.
, 1992, “
A Constitutive Model for Inelastic Flow and Damage Evolution in Solids Under Triaxial Compression
,”
Mech. Mater.
0167-6636,
14
, pp.
1
14
.
13.
Chan
,
K. S.
,
Brodsky
,
N. S.
,
Fossum
,
A. F.
,
Bodner
,
S. R.
, and
Munson
,
D. E.
, 1994, “
Damage-Induced Nonassociated Inelastic Flow in Rock Salt
,”
Int. J. Plast.
0749-6419,
10
, pp.
623
642
.
14.
Chan
,
K. S.
,
Munson
,
D. E.
,
Bodner
,
S. R.
, and
Fossum
,
A. F.
, 1996, “
Cleavage and Creep Fracture of Rock Salt
,”
Acta Mater.
1359-6454,
44
, pp.
3553
3565
.
15.
Chaboche
,
J. L.
, (1983), “
Anisotropic Creep Damage in the Framework of Continuum Damage Mechanics
,” in
Proceedings of the 7th International Conference On Structural Mechanics in Reactor Technology (SMIRT 7)
,
Chicago
.
16.
Neilsen
,
M. K.
,
Burchett
,
S. N.
,
Stone
,
C. M.
, and
Stephens
,
J. J.
, 1996, “
A Viscoplastic Theory for Braze Alloys
,” Sandia Report No. SAND96-0984,
Sandia National Laboratories
, Albuquerque.
17.
Bodner
,
S. R.
, and
Chan
,
K. S.
, 1986, “
Modeling of Continuum Damage for Application in Elastic-Viscoplastic Constitutive Equations
,”
Eng. Fract. Mech.
0013-7944,
25
, pp.
705
712
.
18.
Kachanov
,
L. M.
, 1986,
Introduction to Continuum Damage Mechanics
,
Martinus Nijhoff
,
Boston
.
19.
Rabotnov
,
Y. N.
, 1969,
Creep Problems in Structural Members
,
North-Holland
,
Amsterdam
.
20.
Bodner
,
S. R.
, 1985, “
Evolution Equations for Anisotropic Hardening and Damage of Elastic-Viscoplastic Materials
,” in
Plasticity Today
,
A.
Sawczuk
and
G.
Bianchi
, eds.,
Elsevier and Applied Science
,
London
, pp.
471
482
.
21.
Cocks
,
A. C. F.
, and
Ashby
,
M. F.
, 1982, “
On Creep Fracture by Void Growth
,”
Prog. Mater. Sci.
0079-6425,
27
, pp.
189
244
.
22.
Hayhurst
,
D. R.
, 1972, “
Creep Rupture Under Multi-Axial State of Stress
,”
J. Mech. Phys. Solids
0022-5096,
20
, pp.
381
390
.
23.
Dennis
,
J. E.
, and
Schnabel
,
R. B.
, 1983,
Numerical Methods for Unconstrained Optimization and Nonlinear Equations
,
Prentice-Hall
,
NJ.
24.
Bates
,
D. M.
, and
Watts
,
D. G.
, 1988,
Nonlinear Regression Analysis and Its Applications
,
Wiley
,
New York
.
You do not currently have access to this content.