The sequential thermal-mechanical coupling analysis, which solves in turn the transient temperature field and subsequent thermomechanical deformations, was performed in this work to investigate thermal characteristics along with fatigue reliability of a thin-profile fine-pitch ball grid array chip-scale package subjected to power cycling. The numerical model was calibrated using steady-state and power cycling experiments. Following the calibrated numerical model, different power cycling durations on the thermal characteristics and fatigue reliability of the solder joints were examined. Numerical results indicate that, compared with thermal cycling, power cycling requires many more cycles to achieve a stabilized plasticity index between test cycles. The fatigue reliability would therefore be greatly underestimated if only such an index of the first several cycles is followed in the predictions.

1.
JEDEC Solid State Technology Association
, 2000, “
Temperature Cycling
,” JESD22–A104-B.
2.
Lohan
,
J.
, and
Davies
,
M.
, 1994, “
Transient Thermal Behaviour of a Board-Mounted 160-Lead Plastic Quad Flat Pack
,”
Proceedings of the 1994 Intersociety Conference on Thermal Phenomena in Electronic Systems
, Washington, DC, pp.
108
116
.
3.
Ham
,
S. J.
,
Cho
,
M. S.
, and
Lee
,
S. B.
, 2000, “
Thermal Deformations of CSP Assembly During Temperature Cycling and Power Cycling
,”
Proceedings of the 2nd International Symposium on Electronic Materials and Packaging
, Hong Kong, China, pp.
350
357
.
4.
Lenkkeri
,
J.
, and
Jaakola
,
T.
, 2001, “
Rapid Power Cycling of Flip-Chip and CSP Components on Ceramic Substrates
,”
Microelectron. Reliab.
0026-2714,
41
(
5
), pp.
661
668
.
5.
Syed
,
A.
, 2001, “
Predicting Solder Joint Reliability for Thermal, Power, and Bend Cycle Within 25% Accuracy
,”
Proceedings of the 51st Electronic Components and Technology Conference
, Orlando, FL, pp.
255
263
.
6.
Towashiraporn
,
P.
,
Subbarayan
,
G.
,
McIlvanie
,
B.
,
Hunter
,
B. C.
,
Love
,
D.
, and
Sullivan
,
B.
, 2002, “
Predictive Reliability Models Through Validated Correlation Between Power Cycling and Thermal Cycling Accelerated Life Tests
,”
Soldering Surf. Mount Technol.
0954-0911,
14
(
3
), pp.
51
60
.
7.
Rodgers
,
B.
,
Punch
,
J.
,
Jarvis
,
J.
,
Myllykoski
,
P.
, and
Reinikainen
,
T.
, 2002, “
Finite Element Modelling of a BGA Package Subjected to Thermal and Power Cycling
,”
Proceedings of the 8th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems
, San Diego, CA, pp.
993
1000
.
8.
Popps
,
D. E. H.
,
Mawer
,
A.
, and
Presas
,
G.
, 2003, “
Flip Chip PBGA Solder Joint Reliability: Power Cycling Versus Thermal Cycling
,”
Proceedings of the 8th IMAPS Topical Workshop on Flip Chip Technologies
, Austin, TX.
9.
Liu
,
Y.
, and
Irving
,
S.
, 2003, “
Power Cycling Simulation of an IC Package: Considering Electromigration and Thermal-Mechanical Failure
,”
Proceedings of the 53rd Electronic Components and Technology Conference
, New Orleans, LA, pp.
415
421
,.
10.
Towashiraporn
,
P.
,
Gall
,
K.
,
Subbarayan
,
G.
,
McIlvanie
,
B.
,
Hunter
,
B. C.
,
Love
,
D.
, and
Sullivan
,
B.
, 2004, “
Power Cycling Thermal Fatigue of Sn–Pb Solder Joints on a Chip Scale Package
,”
Int. J. Fatigue
0142-1123,
26
(
5
), pp.
497
510
.
11.
Towashiraporn
,
P.
,
Subbarayan
,
G.
,
McIlvanie
,
B.
,
Hunter
,
B. C.
,
Love
,
D.
, and
Sullivan
,
B.
, 2004, “
The Effect of Model Building on the Accuracy of Fatigue Life Predictions in Electronic Packages
,”
Microelectron. Reliab.
0026-2714,
44
(
1
), pp.
115
127
.
12.
Roesch
,
W. J.
, and
Jittinorasett
,
S.
, 2004, “
Cycling Copper Flip Chip Interconnects
,”
Microelectron. Reliab.
,
44
(
7
), pp.
1047
1054
. 0026-2714
13.
Wang
,
T. H.
,
Lai
,
Y. -S.
, and
Lee
,
C. -C.
, 2005, “
Board Level Power Cycling and Thermal Cycling Fatigue Reliability of Chip-Scale Packages
,”
Journal of Microelectronics and Electronic Packaging
,
2
(
3
), pp.
171
179
.
14.
Perkins
,
A.
,
Tunga
,
K.
, and
Sitaraman
,
S.
, 2006, “
Acceleration Factor to Relate Thermal Cycles to Power Cycles for Ceramic Ball Grid Area Array Packages
,”
Journal of Microelectronics and Electronic Packaging
,
3
(
4
), pp.
177
193
.
15.
Park
,
S. B.
, and
Ahmed
,
I. Z.
, 2007, “
Shorter Field Life in Power Cycling for Organic Packages
,”
ASME J. Electron. Packag.
1043-7398,
129
(
1
), pp.
28
34
.
16.
Darveaux
,
R.
, 2002, “
Effect of Simulation Methodology on Solder Joint Crack Growth Correlation and Fatigue Life Prediction
,”
ASME J. Electron. Packag.
1043-7398,
124
(
3
), pp.
147
154
.
17.
Wang
,
T. H.
,
Lee
,
C. -C.
,
Lai
,
Y. -S.
, and
Lin
,
Y. -C.
, 2006, “
Transient Thermal Analysis for Board-Level Chip-Scale Packages Subjected to Coupled Power and Thermal Cycling Test Conditions
,”
ASME J. Electron. Packag.
1043-7398,
128
(
3
), pp.
281
284
.
18.
Lai
,
Y. -S.
,
Wang
,
T. H.
, and
Lee
,
C. -C.
, 2008, “
Thermal-Mechanical Coupling Analysis for Coupled Power- and Thermal-Cycling Reliability of Board-Level Electronic Packages
,”
IEEE Trans. Device Mater. Reliab.
,
8
(
1
), pp.
122
128
. 1530-4388
19.
Wang
,
T. H.
,
Lai
,
Y. -S.
, and
Lin
,
Y. -C.
, 2008, “
Reliability Evaluations for Board-Level Chip-Scale Packages Under Coupled Power and Thermal Cycling Test Conditions
,”
Microelectron. Reliab.
,
48
(
1
), pp.
132
139
. 0026-2714
20.
Zahn
,
B. A.
, and
Stout
,
R. P.
, 1997, “
Evaluation of Isothermal and Isoflux Natural Convection Coefficient Correlations for Utilization in Electronic Package Level Thermal Analysis
,”
Proceedings of the 13th Annual IEEE Semiconductor Thermal Measurement and Management Symposium
, Austin, TX, pp.
24
31
.
21.
Guenin
,
B. M.
,
Marrs
,
R. C.
, and
Molnar
,
R. J.
, 1995, “
Analysis of a Thermally Enhanced Ball Grid Array Package
,”
IEEE Trans. Compon. Packag. Manuf. Tech.
,
18
(
4
), pp.
749
757
. 1070-9886
22.
EIA/JEDEC
, 1995, “
Integrated Circuits Thermal Test Method Environment Conditions—Natural Convection (Still Air)
,” EIA/JESD51-2.
You do not currently have access to this content.